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Why do people discount future rewards? Multiple theories in psychology argue that one
reason is that future events are imagined less vividly than immediate events, thereby
diminishing their perceived value. Here we provide neuroscientific evidence for this
proposal. First, we construct a neural signature of the vividness of prospective thought,
using an fMRI dataset where the vividness of imagined future events is orthogonal to
their valence by design. Then, we apply this neural signature in two additional fMRI
datasets, each using a different delay-discounting task, to show that neural measures of
vividness decline as rewards are delayed farther into the future.

fMRI j construal level theory j imagination j prospection j delay discounting

Many of the most important choices we make in our daily lives involve tradeoffs between
the present and the future. Should I spend money now or save it for retirement? Can I
forego the pleasure of eating this dessert now in order to reach my weight loss goal and
improve my health? In such intertemporal decisions, humans tend to devalue, or dis-
count, outcomes in the future: a phenomenon known as delay discounting. In the labora-
tory, this tendency can be measured by presenting participants with choices between a
smaller monetary amount available immediately and a larger monetary amount available
after a delay. Patience as measured by laboratory intertemporal choice tasks predicts other
important aspects of life such as drug and alcohol abuse, educational attainment, and per-
sonal finances (1–7).
Why, however, are delayed outcomes fundamentally less desirable? Psychologists

have long pondered this important question. Although multiple factors may contribute
to discounting (8), several theories suggest that one important factor is that distant out-
comes are imagined less vividly than proximal ones. Rick and Loewenstein (9) have
pointed out that in many intertemporal decisions, delayed outcomes are intrinsically
less tangible than sooner ones. For example, while a calorie-rich dessert yields immedi-
ately perceivable pleasure for the eater, the promise of better future health is less appre-
ciable. Similarly, construal level theory proposes that even when future outcomes are
not intrinsically less tangible, people tend to use a process of high-level construal when
thinking about future events that leads to their being represented in a relatively more
abstract way (10, 11). In contrast, when people consider sooner events, they use low-
level construal and represent them in a relatively more concrete manner. Many studies
have provided some support for the central claim that the same outcome is perceived
less concretely when it occurs farther in the future rather than more immediately (for
review, see ref. 11) and linked these to changes in representation of delay discounting
(12, 13). A related literature has shown that vividly imagining future events reduces
delay discounting, again suggesting that delayed outcomes are discounted because they
are perceived less vividly (14–16) (for review, see ref. 15). However, an ideal test of
whether future outcomes are perceived less vividly during intertemporal decision mak-
ing would measure vividness online and nonobtrusively while people are making inter-
temporal decisions. Functional brain imaging (fMRI) has the potential to provide such
a nonobtrusive online test.
While many fMRI studies have compared brain activity for sooner versus later out-

comes (for review, see ref. 17), this comparison does not isolate activity attributed
solely to the vividness of outcomes, as sooner outcomes are generally valued more
highly than delayed ones; that is, brain activity selectively responding for sooner versus
later outcomes may reflect valuation, not necessarily vividness. Indeed, several previous
studies that have compared sooner and later outcomes have found increased activity in
the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC), two regions
with well-established roles in valuation (18–22). Also, studies that have used episodic
imagery of future events to reduce delay discounting cannot easily dissociate the neural
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effects that are due to episodic imagery enhancing the vividness
of future outcomes versus directly increasing the valuation of
future outcomes (14, 16).
In the current study, we use a whole-brain multivariate pre-

dictor approach that provides a principled way to perform
reverse inference by considering the pattern of activity across
multiple brain regions and formally testing the predictive power
of this neural pattern (23). For the prediction algorithm, we
use thresholded partial least squares (T-PLS) (24) to construct a
whole-brain multivariate neural predictor of the vividness of
imagined future events. To train this predictor, we use a pro-
spective imagination dataset (22), in which the vividness (high
versus low) and valence (positive versus negative) of imagined
future events were orthogonal, such that the subsequent neural
predictor was specific to vividness and not valence. We then
applied the whole-brain neural predictor of vividness in two sep-
arate delay-discounting task datasets with different evaluation
schemes (bidding versus choice) to test whether the temporal
distance of monetary options in intertemporal decision making
modulates the neural signature of vivid imagination.

Results

Our first goal was to assess whether it is possible to create a
whole-brain neural predictor of imagination vividness using
T-PLS (Fig. 1), that does not also predict imagination valence.
We used an fMRI dataset of 24 participants imagining possible
future events that had been categorized a priori as high versus
low in vividness and positive versus negative in valence (ref. 22
and Fig. 2A). Using a nested cross-validation approach, we
built a whole-brain predictor using 23 participants at a time
and tested whether it can predict the vividness but not the
valence of imagined future events. Across the 24-folds, the
T-PLS whole-brain predictors used between 8 and 17 partial
least square components and were mostly thresholded to be
around 0.5% of the total voxels (Fig. 2B).
We found that T-PLS can create neural predictors of imagina-

tion vividness that, in out-of-sample prediction, successfully
discriminate the trial categories of high versus low vividness

[mean prediction area under the receiver operating characteristic
curve (AUC) = 62.06%, t test against 50%, t(23) = 5.21, Bonfer-
roni P < 0.0001, Cohen’s d = 1.06], but not the trial categories
of positive versus negative valence [mean prediction AUC =
47.30%, t test against 50%, t(23) = �1.72, Bonferroni P = 0.39;
Fig. 2C]. We found similar results with the participants’ ratings of
the vividness and valence of imagined future events (Fig. 2D).
Mean out-of-sample correlation between the neural vividness score
and vividness ratings was r = 0.15 [t(23) = 3.55, Bonferroni P =
0.0068, Cohen’s d = 0.73], while the correlation between the
neural vividness score and valence ratings was r = �0.06 [t(23) =
�2.14, Bonferroni P = 0.17]. Finally, we verified that neural
vividness scores were not significantly correlated with any of the
other 10 aspects of imagination rated for these stimuli (e.g.,
arousal, subjective temporal distance; SI Appendix, section I).

The whole-brain prediction map of vividness involved various
regions of the brain, mostly in a bilateral fashion (Fig. 3 and
Table 1). Positive coefficients (predictive of higher vividness) were
found in bilateral hippocampus, bilateral central orbitofrontal cor-
tex (OFC), and left middle occipital gyrus. Negative coefficients
(predictive of lower vividness) were found in bilateral precuneus/
PCC, left inferior temporal gyrus, and right postcentral gyrus.

We next applied this whole-brain predictor of vividness in
two separate delay-discounting tasks, in order to test whether
the neural signature of vivid future thinking is higher when
considering sooner rewards and lower when considering later
rewards. In both datasets, we found that neural vividness scores
were negatively correlated with the delay until the receipt of the
reward, such that farther delays were associated with lower viv-
idness scores. Firstly, in an intertemporal bidding task, partici-
pants (n = 39) were presented with a fixed monetary outcome
of $75 at different delays and asked to report the immediate
amount they would feel to be equivalent to the delayed outcome
(21). For each trial, we calculated neural vividness scores by
applying the above-developed whole-brain predictor to the activ-
ity for that trial. We found that the trial-by-trial neural vividness
scores were correlated negatively with delay [Fig. 4; mean r =
�0.055, t(38) = �3.08, P = 0.0038], such that shorter delays
(i.e., more proximal future) were associated with higher vividness

Fig. 1. T-PLS approach to building a whole-brain predictor, adapted with permission from ref. 24. From Left to Right, the T-PLS method is outlined. The first
step performs partial least squares on the brain image data (X) and the dependent variable (Y) in order to extract components that maximally explain the
covariance between X and Y. Each of these components are paired with weight maps that describe how each component is a weighted sum of the original
voxels. They are also associated with regression coefficients and t statistics (approx. z-stat) from regressing the dependent variable onto the components.
These regression coefficients and z-stats are multiplied with their respective weight maps to yield regression coefficients and z-stats in the original voxel
space. Using the voxel-level z-stats, the whole-brain predictor is thresholded by removing less important voxels (i.e., voxels with smaller absolute z-stats).
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scores and longer delays (i.e., more distant future) with lower
vividness scores.
We replicated this finding in a second dataset in which par-

ticipants made discrete binary choices between immediate and
delayed rewards. In this choice task, participants (n = 166)
made choices between a fixed immediate reward of $20 and a
future reward that varied in amount ($21 ∼ $85) and delay
(20 ∼180 d) across trials (25). Again, we found that the trial-
by-trial neural vividness scores were correlated negatively with
delay [Fig. 5; mean r = �0.050, t(165) = �6.09, Bonferroni
P < 0.0001], such that shorter delays were associated with
higher vividness scores. Furthermore, this association was spe-
cific to the delay to reward. The neural vividness scores were
not significantly correlated with the delayed amount [mean r =
0.016, t(165) = 2.12, Bonferroni P = 0.11], and vividness was
more strongly associated with delay than amount [paired t test,
t(165) = 3.10, Bonferroni P = 0.007].
Lastly, we examined whether the correlation between neural

vividness scores and delay varies systematically across time-on-
task or people. Across time, we tested for habituation effects by
comparing the mean correlation in the first two scanner runs
against the mean correlation in the last two scanner runs. On
average, the delay–vividness correlation in the earlier half of the
experiment was higher than that in the later half of the experi-
ment for both tasks (Fig. 6; bidding task: paired sign-rank z =
2.22, P = 0.026, Cohen’s d = 0.16; choice task: paired sign-rank
z = 2.13, P = 0.033, Cohen’s d = 0.25). Across people, we tested

whether the delay–vividness correlation was stronger for those with
higher discount rates (Fig. 7). We found evidence for this relation-
ship in the choice task across 166 people (r = 0.2, P = 0.011),
but not in the bidding task across 39 people (r = 0, P = 1).

In parallel to our main analyses and results above, we also
created a whole-brain predictor of valence that is orthogonal to
vividness. While neural vividness scores were specifically associ-
ated with delay during intertemporal decision making, neural
valence scores tracked the value of delayed rewards. In the bid-
ding task, neural valence scores correlated with both the nega-
tive delay and the participants’ bids; in the choice task, neural
valence scores were correlated with both the negative delay and
amount. We also tested whether the delay–valence correlation was
stronger for those with higher discount rates; this was again true
only for the choice task but not the bidding task (SI Appendix,
section II).

Discussion

Multiple theories in psychology have suggested that delayed
outcomes are discounted in value relative to immediate out-
comes in part because more temporally distant options are per-
ceived as less vivid and tangible than more temporally proximal
ones (9–11, 14, 16). These theories have been supported by a
range of various behavioral experiments (11, 12, 15, 26–29).
Here we add converging neuroscientific evidence for these
theories.

A

B C D

Fig. 2. Out-of-sample prediction of vividness and valence in the prospection dataset. (A) Schematic of the prospection task from ref. 22. (B) Distribution of
T-PLS tuning parameters across the 24-fold cross-validation. (C) Classification performance on a priori trial categories of vividness (high versus low) and
valence (positive versus negative) as measured by area under the receiver operating characteristic curve. (D) Correlation with vividness and valence ratings
provided by participants. Error bars represent the SEM. Bonferroni-corrected **P < 0.01, ***P < 0.001.

Fig. 3. Whole-brain predictor of the vividness of imagined future events. The warm colors indicate positive coefficients and cool colors indicate negative
coefficients.
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We used fMRI data during an imagination task to create a
whole-brain, multivariate predictor specific to the vividness of pro-
spective thought, independent of the valence of prospective
thought. Then we show, in two separate delay-discounting data-
sets with markedly different task structure (one bidding task, one
choice task), that the neural signature of vividness is modulated by
the temporal distance to the delayed option under consideration.
That is, the pattern of neural activity that predicts more vivid
prospective thinking is stronger for more temporally proximal out-
comes and weaker for more temporally distal ones. The neural sig-
nature of vividness was also more strongly modulated by the delay
to reward than by the magnitude of reward. Furthermore, we find
that this modulation of the neural signature of vividness by delay
is stronger in earlier phases of the experiment, when participants
may be more actively simulating delayed options, than in later
phases, when participants may be more simply following response
rules or habits. We also find some evidence that this modulation
is stronger in higher discounters, as one might expect, given that
delay has a stronger effect on behavior in higher discounters,
though this relationship was only observed in the larger of the two
datasets we examined. Taken together, these results show that,
while people are making intertemporal decisions, an online, unob-
trusive neural index of vivid thinking declines as the outcomes
considered are delayed farther into the future.

Though the correlation between neural vividness scores and
delay was significant, it was also small, at or below r = 0.1. We
believe that the largest factor influencing the size of these corre-
lations is the inherent noise in single-trial activity estimates in
fMRI. Previous studies have simulated multivariate prediction
analyses with fMRI, assuming typical signal-to-noise ratios, and
found correlations between 0.1 and 0.3 depending on the sig-
nal-to-noise assumptions (30). In light of this, it is all the more
remarkable that we observe significant correlations between
neural prediction scores for vividness and a different variable
(delay) in a completely different task (delay discounting). We
have also shown that the size of this correlation is reduced by a
habituation effect in both datasets and influenced by behavior-
ally relevant individual differences in the choice dataset. We
also expect that the ability to decode mental activity from brain
activity varies depending on the mental construct, the fidelity
with which it can be elicited and measured, and aspects of
brain organization (e.g., prediction is likely easier for motor
activity, which is mapped on the cortical surface). Given these
factors, we do not think that the correlations we observed were
unexpectedly low, though the effect sizes we report should be
interpreted in light of the various factors outlined above.

Our results complement previous tests of construal level the-
ory using fMRI. These studies have shown that neural activity

Table 1. Clusters in the whole-brain predictor of imagination vividness

Description Size (number of voxels) X Y Z

Positive
Bilateral hippocampus 133 voxels (left) �33 �34 �18

87 voxels (right) 36 �32 �20
Bilateral central orbitofrontal cortex 80 voxels (left) �23 35 �14

32 voxels (right) 26 31 �14
Left middle occipital gyrus 65 voxels �37 �80 35
Left calcarine 32 voxels �5 �52 5
Right fusiform gyrus 17 voxels 52 �60 �24
Left precuneus/cingulate 12 voxels �9 �42 49

Negative
Bilateral precuneus/PCC 26 voxels (left) �9 �54 31

31 voxels (right) 8 �50 27
Left inferior temporal gyrus 24 voxels (cluster 1) �39 11 �42

24 voxels (cluster 2) �47 �4 �30
Right postcentral gyrus 22 voxels 64 �20 15

Reported are clusters of voxels that have nonzero coefficients in the final predictor of the vividness of imagined future events, grouped by the sign of the coefficients and ordered by
cluster size. From left to right, the region names, cluster size in voxels, and peak MNI coordinates are provided. Clusters that are 10 voxels or smaller have been omitted.

A B

Fig. 4. Out-of-sample prediction of delay in an intertemporal bidding task. (A) Bidding task structure from intertemporal bidding dataset (21). Participants
are first shown the delayed amount of $75 (fixed) and a variable delay and are asked to bid their immediate equivalent. (B) Per-subject correlation between
trial-by-trial delay (sign flipped) and vividness prediction scores from the whole-brain predictor. The vertical bar represents the mean, and the horizontal bar
represents the SEM (n = 39).
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associated with imagining near events, compared to distant
events, overlaps with neural activity engaged by other forms of
psychological proximity or by low- versus high-level construal
(18, 31). Here we make two advances over these previous
results. First, we distinguish between neural activity due to the
vividness, versus the valence, of prospective thought. This is
critical as several previous studies have found the strongest
increases in activity for sooner, compared to later, events in the
mPFC and PCC (18, 19), two regions that we have previously
shown are associated with the valence of prospective thought
(22). Second, we show that a neural index of vividness is modu-
lated by the delay to the outcome during intertemporal decision
making. This links reduced vividness directly to the discounting
of future rewards, a process known to be associated with many
important life outcomes (1–7). Finally, note that although our
neural signature was constructed to decode the vividness rather
concreteness of prospective thought (with the latter being the
relevant construct in construal level theory (10, 11), vividness
and concreteness ratings of the stimuli we used were highly cor-
related (r ≥ 0.80) and therefore neural vividness scores were
also correlated with concreteness (SI Appendix, section III).
The whole-brain prediction map for vividness is remarkably

consistent with findings from other lines of research. Several previ-
ous studies have argued that the orbitofrontal cortex represents the
features of potential outcomes during decision making (32–34),

and that interactions with the hippocampus may be critical for
generating these representations from memory (for review, see ref.
35). Furthermore, there is evidence that these regions play a role
in valuing delayed rewards. Lesions to the OFC caused increased
impatience (36), and reduced gray matter thickness in both the
OFC (37) and the medial temporal lobe (38, 39) is associated
with increased discounting. The hippocampus is more active
when choosing delayed rewards under conditions with greater
simulation demands (40), and the reduction in delay discounting
by episodic future thinking is associated with increased connectiv-
ity between hippocampus and frontal brain regions (14, 16) and
requires an intact medial temporal lobe (41). Correspondingly, we
would expect that manipulating activity in these regions as people
consider future outcomes, for example through noninvasive neuro-
stimulation techniques, would alter the vividness with which those
outcomes are imagined and the degree to which those outcomes
are discounted.

To obtain the current results, we applied a modified partial
least squares algorithm optimized to construct interpretable
whole-brain predictors with minimal computation time (24).
Though many different methods for constructing whole-brain
predictors have been proposed (42–45), none have yet achieved
widespread use in the field, presumably due to hurdles posed by
their heavy computational demand and/or difficulty with inter-
pretability. The T-PLS method we used here joins other methods

A B

Fig. 6. Changes in vividness-delay correlation over time. Average correlation between negative delay and neural vividness score for each run, for the bid-
ding task (A) and for the choice task (B). The mean of the first two runs’ correlation is significantly higher than the mean of the last two runs’ correlation.
Error bars represent the SEM (Bonferroni-corrected *P < 0.05).

A B

Fig. 5. Out-of-sample prediction of delay in an intertemporal choice task. (A) Choice task structure from intertemporal choice dataset (25). Participants are
shown the delayed reward and are asked to either accept it or to reject it for $20 immediately. (B) Per-subject correlation between trial-by-trial delay (sign
flipped) and vividness prediction scores in comparison to that between trial-by-trial amount and vividness prediction scores (delay has been sign flipped to
facilitate this comparison). The vertical bar represents the mean, and the horizontal bar represents the SEM (n = 166).
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in providing interpretable whole-brain predictors (42, 45), while
significantly reducing the computational burden by using analyti-
cal computations. It is important to note that the end model of
T-PLS, like many other whole-brain methods, is a linear model,
but with regularization and variable selection. There are more
sophisticated nonlinear models that have been used in smaller
regions of the brain to decode more fine-grained patterns (46). In
this paper, we illustrate what we think is the most promising and
exciting potential use of a whole-brain predictor: decoding mental
states online in order to test psychological hypotheses.

Materials and Methods

Prospection Dataset. We used a dataset from Lee et al. (22) to develop a
whole-brain predictor of the vividness of imagined future events. The dataset
was deidentified prior to use in our study and is available online at openneuro
(doi:10.18112/openneuro.ds002835.v1.0.1). This study examined neural activity
associated with the valence (positive versus negative) and vividness (high versus
low) of imagined future events. Twenty-four participants underwent fMRI scan-
ning while imagining 32 different future scenarios. In a 2 × 2 design (positive
versus negative valence crossed with high versus low vividness), 8 different
unique scenarios were selected for each condition based on pilot testing. Each
scenario was repeated twice during the experiment. Participants completed four
runs and imagined 16 scenarios per run. Each trial involved up to 5 s of partici-
pants reading the scenario cue, 12 s of imagination, and up to 14 s in which
participants rated the vividness and valence of the imagined event on a 7-point
Likert scale (7 s each). The trial duration was buffered such that the time the par-
ticipants did not use in the cue and rating phases was appended to the inter-trial
interval at the end of the trial to make the total duration of a single trial 34 s.
The 32 scenarios used in this task are provided in SI Appendix, section IV.

Delay Discounting Datasets. We applied the neural predictor of vividness
developed in the prospection dataset in two different delay-discounting datasets
to test whether the neural signature of vividness is modulated by delay during
intertemporal decisions. We use one bidding dataset and one choice dataset to
evaluate the robustness of the results to different task structures. The first dataset
we used was from Cooper et al. (21), which involved bidding on delayed rewards
(deidentified dataset available online at openneuro; doi:10.18112/openneuro.
ds002989.v1.0.0). A total of 40 participants were asked in each trial to indicate
an immediate monetary amount that they would feel was equivalent to receiving
$75 after a given delay, varying from 14 to 364 d. Each trial began with a screen
of the form “I feel indifferent between receiving $75 in 28 days and receiving
_____ now.” After the prompt was shown for 3 to 5 s, participants were then
allowed a maximum of 10 s to use a button pad to indicate their immediate
equivalent amount within a range of $0 to $75. Each participant went through
four scan runs, each of which involved 26 questions at different delays, ranging

from 14 to 364 d. We removed one participant who bid $75 for all trials regard-
less of delay, as we were not sure whether the participant understood the task.
An advantage of this dataset is that it presents participants with the exact same
reward amount at varying delays, thereby allowing us to test whether the neural
signature of imagination vividness is modulated by the delay. The flipside of this
advantage is that only the delay, and not the amount, of the delayed reward is
varied across trials. This limitation is addressed in the second dataset below.

The second dataset we used was from Kable et al. (25), which investigated
the effects of cognitive training on neural activity during economic decision mak-
ing (deidentified dataset available online at openneuro; doi:10.18112/
openneuro.ds002843.v1.0.1). Here we use the data from the intertemporal
choice task in the first, baseline, scanning session. A total of 166 participants
completed four runs of the intertemporal choice task while being scanned. Each
run consisted of 30 binary choices between a smaller immediate reward of $20
today that was held constant throughout the entire session and a larger delayed
reward (e.g., $30 in 7 d) that varied in amount and delay from trial to trial. On
each trial, the delayed option was shown on the screen; the immediate option
was not displayed. Participants pressed the left/right buttons on a button pad to
indicate whether they would like to accept the delayed option shown on the
screen and forego the immediate reward of $20 or to reject the delayed option
and take the immediate reward of $20. Participants had up to 4 s to respond,
and after their response, a checkmark was shown on the screen if they accepted
the delayed reward and an X was shown on the screen if they rejected it.

Image Acquisition. For all datasets, the images were collected with a Siemens
3T Trio scanner with a 32-channel head coil. High-resolution T1-weighted ana-
tomical images were acquired using an MPRAGE sequence (T1 = 1,100 ms;
160 axial slices, 0.9375 × 0.9375 × 1.000 mm; 192 × 256 matrix). The pro-
spection dataset’s echo-planar imaging (EPI) sequence involved 44 axial slices
with 181 volumes, the intertemporal bidding dataset’s EPI sequence involved
45 axial slices with 150 to 152 volumes, and the intertemporal choice dataset’s
EPI sequence involved 53 axial slices with 104 volumes. The prospection dataset
and the intertemporal choice dataset included B0 fieldmap images for distortion
correction (Repetition Time (TR) = 1,000 ms, Echo Time (TE) = 2.69, and 5.27
ms for prospection dataset and TR = 1,270 ms, TE = 5, and 7.46 ms for the
intertemporal choice dataset).

Image Preprocessing. All datasets were preprocessed via fMRIPrep (47). All
BOLD runs were motion corrected, slice-time corrected, b0-map unwarped, regis-
tered, and resampled to a Montreal Neurological Institute (MNI) 2-mm template.
fMRIPrep does not perform smoothing, so it was manually performed after esti-
mating single trial activities (see below).

BOLD Deconvolution. We used beta-series regression (48) to estimate the
BOLD activity associated with each trial in each of the three datasets. In the pro-
spection dataset, we estimated the BOLD activity during the imagination period
of 12 s. The regressors were time locked to imagination time onset with an event

A B

Fig. 7. Correlation between individual discount rate and vividness-delay correlation. Scatterplot between individual logk (abscissa) and individual vividness-delay
correlation (ordinate) for the bidding task (A) and for the choice task (B).
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duration of 12 s and convolved with a double gamma hemodynamic response
function (HRF). In the two delay-discounting datasets, the regressors were time
locked to the onset of the response period (when participants can input their
response) with event duration of 0.1 s and convolved with a double gamma HRF
function. In the intertemporal choice dataset only, the last trial of each run was
excluded from analysis because the BOLD activity of the last trial was often not
observed due to the termination of the scan. After the single-trial coefficients
were estimated, all images were smoothed with a FWHM 8-mm Gaussian filter,
which is the standard smoothing kernel for SPM software. Finally, we used the
Automated Anatomical Labeling (AAL) atlas as a mask to retain only gray
matter voxels.

Prediction Algorithm. To create a whole-brain predictor of the vividness of
imagined future events, we used T-PLS (24). T-PLS is similar in approach to
other methods for constructing whole-brain predictors that use principal compo-
nents analysis (PCA) to reduce the dimensionality of the data followed by
regression (42, 49, 50). The key advantage of T-PLS over PCA-based methods is
that partial least squares (PLS) components maximally explain the covariance
between the predictors and the outcome, whereas PCA components only
explain the variance of the predictors. Thus, PLS yields data reduction that is
more pertinent to prediction.

Building a whole-brain predictor of vividness is done in three steps (Fig. 1).
First, we performed PLS to extract components that maximally explain the covari-
ance between the single-trial images and the binary vividness trial categories
(high versus low). These components consist of a map of weights for each voxel
in the brain. PLS also automatically yields coefficients for each component that
are equivalent to the regression coefficients one would obtain from regressing
the dependent variable on the components. We also calculated the t statistics of
each component as one would get from a regression model (here, given the
large number of observations, we assume that the t statistics are approximations
of z statistics). In the second step, we back project the PLS coefficients and z sta-
tistics into the original voxel space by multiplying them with the PLS weight
maps. This yields coefficients for each of the brain voxels for easier interpretation.
In the final step, we used the back-projected z statistics of each voxel to rank
their variable importance and threshold the voxel coefficient map so that less
important voxels are removed from the final predictor. This final predictor can be
used to obtain a “vividness score” for each brain image by calculating the dot
product between the predictor and the image.

The two tuning parameters—number of PLS components and the level of
thresholding—are chosen based on cross-validation performance. In our paper,
we use the “one-standard-error rule” to choose the most parsimonious model
(least number of voxels) whose cross-validation performance is comparable with
the best model (i.e., the tuning parameter combination that yields the highest
cross-validation performance). This criterion is used ubiquitously in modern
regressions and is often the default choice of tuning parameters in statistical
packages (51–57).

Sensitivity and Specificity Analysis. To assess whether we can create a
whole-brain predictor of vividness that is orthogonal to valence, we performed a

nested 24-fold leave-one-person-out cross-validation within the prospection data-
set. We trained the predictor on data from 23 participants and tested on the one
left-out person. Within the 23 training participants’ data, we employed an addi-
tional 23-fold leave-one-person-out cross-validation to find the optimal number
of components and thresholding level. After the best parameters were found,
the T-PLS model was fitted using all 23 participants and used to predict the left-
out person’s data. Specifically, we tested whether the T-PLS model can accu-
rately classify the high versus low vividness trial categories but not positive
versus negative trial categories and whether the classifier output correlates with
vividness ratings but not with valence ratings. As a parallel to this analysis, we
also repeated the same process to assess whether we can create a whole-brain
predictor of valence that is orthogonal to vividness (SI Appendix, section II and
Fig. S.1).

Constructing the Predictor of Vividness. Once we established that T-PLS
can build a whole-brain predictor of vividness that is orthogonal to valence, we
used the entire prospection dataset to build a whole-brain predictor of vividness
to be used for prediction in other datasets. We used 24-fold leave-one-out cross-
validation within the prospection dataset (but not nested cross-validation as in
the sensitivity and specificity analysis) to choose one number of components
and one thresholding value for the final predictor. Again, as a parallel to this
analysis, we also repeated the same process to build a whole-brain predictor of
valence to be used for prediction in other datasets (SI Appendix, section II and
Fig. S.2).

To calculate an expression score for the neural signature of vividness during
delay discounting, we calculated the dot product between the neural predictor of
vividness and the brain image of estimated activity for each trial. These scores
were then correlated with the delay until the receipt of the delayed reward (in
days) in both datasets, and the delayed amount in the intertemporal choice data-
set (since the delayed amount is constant in the intertemporal bidding dataset).
The correlations were performed at the individual level, and each individual’s
correlation coefficient was used as a summary statistic to test whether there was
a significant correlation at the group level. The parallel analysis using the neural
signature of valence is provided in SI Appendix, section II and Fig. S.3.

Data, Materials, and Software Availability. Three previously published
datasets were used for this work. The prospection dataset from Lee et al.
(22, 58), delay discounting bidding dataset from Cooper et al. (21, 59), and
delay discounting choice dataset from Kable et al. (25, 60). All three datasets are
deidentified and available online at openneuro at their respective URLs.
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