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are relatively stable personal dispositions that act as an 
important source for achieving a particular goal (Atkin-
son, 1957). The chosen achievement motivation orienta-
tion while pursuing a goal can account for comprehensive 
behavioral and neural differences (Ames, 1992; Kim et al., 
2016). For example, achievement motivation orientation is 
related to positive sensitivity, and associated with stronger 
activations in reward-related brain regions (Elliot & Thrash, 
2010; Swanson & Tricomi, 2014), whereas a motivation 
deficiency has been linked to emotional vulnerabilities such 
as depression (Strauman & Eddington, 2017).

The construct of achievement motivation has occurred 
through the combined theoretical and conceptual models. 
It was initially developed as two dichotomous models: 
the learning-performance and task-ego (Nicholls, 1989; 
Smiley & Dweck, 1994). These two dichotomous models 
were later unified into a single framework with two types 

Introduction

Motivation plays a crucial role in human behaviors such 
as decision making, goal setting, academic and career suc-
cess (Bryan & Locke, 1967; Maddox & Markman, 2010). 
Motivation is the force that drives one’s actions toward a 
desired goal (i.e., achievement motivation) (Murayama et 
al., 2012). The orientations of the achievement motivation 
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Abstract
Motivation plays a critical role in human cognitive function, while acting as a driving force for the necessary behavior to 
achieve a desired goal and success (i.e., achievement motivation). Based on the theoretical background of achievement 
motivation, this study designed an incentive delay task with four motivational orientations (i.e., promotion, prevention, 
mastery/self, and performance/other). To investigate whether people would have their behavioral patterns toward achieve-
ment motivation orientation, we applied an unsupervised clustering algorithm to classify individuals’ behavioral responses 
acquired from the task by categorizing certain behavioral similarities. As a result, this hierarchical clustering approach 
classified subjects into two distinctive subgroups: Group#1 (i.e., the pro/pre group, n = 52) and Group#2 (i.e., the self/
other group, n = 48). Based on clustering, Group#1 showed significantly better performance with promotion/prevention 
orientations, whereas Group#2 exhibited significantly higher performance with self/other orientations. Structural brain 
analyses discovered increased gray matter volume and sulcal depth in the posterior parietal cortex (PPC) in the pro/pre 
group compared to the self/other group. With resting-state functional magnetic resonance imaging data, we found higher 
local brain fluctuations in the medial prefrontal cortex (mPFC) in the self/other group compared to the pro/pre group. Fur-
thermore, mPFC seed-based functional connectivity showed significantly increased functional coupling with the posterior 
cingulate cortex in the self/other group relative to the pro/pre group. Taken together, these results shed light on structural 
and functional neural mechanisms related to achievement motivation and, furthermore, provide novel insights regarding 
PPC’s role in motivational processing toward promotion- and prevention-focused orientation.
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of motivations: mastery and performance (Ames & Archer, 
1988). Previous studies proved that these two types of moti-
vational orientation were related to social comparison (Dar-
non et al., 2010; Park & Park, 2017; Régner et al., 2007). The 
social comparison dimension distinguishes motivational 
orientations based on whether one compares themselves 
with oneself or with others (hereafter referred to as “self/
other dimension”), which can be mastery and performance 
goals (Ames, 1992; Elliot & McGregor, 2001; Midgley et 
al., 2000). Mastery and performance goals have different 
perspectives on success/achievement and involve different 
perceptions toward oneself and task performance. Mastery-
oriented individuals are more focused on personal success 
and accomplishments and therefore strive to advance their 
skills or to gain new knowledge. Performance-oriented peo-
ple are focused on superior performance compared to others 
and thus tend to seek social prestige (Ames, 1992).

Following the aforementioned motivational orientation, 
another framework of achievement motivation was intro-
duced as approach-avoidance orientation (Elliot & Church, 
1997; Elliot & McGregor, 2001; Elliot & Thrash, 2010). 
This corresponds to promotion-prevention motivational 
orientation, which has been extensively used as regulatory 
focus theory in the personal goal pursuit (Higgins, 1997). 
The regulatory focus dimension postulates two separate 
self-regulatory motivational orientations, promotion and 
prevention (hereafter referred to as “pro/pre dimension”), 
based on how individual motivation is evaluated, either by 
reaching gains or avoiding loss (Higgins, 1997). Promotion-
focused individuals regulate themselves toward positive 
end-states with emphasis on eager aspirations and approach 
strategy. They view goals as ideals, hopes, accomplish-
ments, and advancements. On the other hand, prevention-
focused individuals employ avoidance-oriented strategies 
and focus on the absence of negative outcomes. They have 
goal perspectives as ought, and they concordantly prioritize 
duties, obligations, and responsibilities (Detloff et al., 2020; 
Eddington et al., 2007).

Previous neuroimaging studies have revealed the neural 
circuits associated with the abovementioned motivational 
orientations (Detloff et al., 2020; Eddington et al., 2007; 
Kim et al., 2016). The valuation circuit involves a value-
based decision-making that estimates various options in 
the choice set, continuously evaluating and updating val-
ues. Understanding stimulus values, people can approach or 
avoid behaviors according to their goal orientations. This 
circuit includes the ventral striatum, ventromedial prefron-
tal cortex (vmPFC), medial orbitofrontal cortex (mOFC), 
and the precuneus and posterior parietal cortex (PPC) (Bar-
tra et al., 2013; Jocham et al., 2014; Rangel et al., 2008). 
The default mode network (DMN) is involved in self-regu-
lation during personal goal pursuit while internally focusing 

cognition and self-/other-referential thoughts (Badre & Nee, 
2018; Detloff et al., 2020). This network consists of the 
medial prefrontal cortex (mPFC) and the posterior cingulate 
cortex (PCC), also found in the valuation circuit, as well as 
the precuneus, the lateral and medial temporal lobes, and 
the posterior inferior parietal lobule (Buckner et al., 2008). 
The salience network is engaged for motivationally salient 
stimuli and leads to approach behaviors that trigger reward. 
This network consists of the anterior cingulate cortex, ante-
rior insula, amygdala, and dorsal striatum (Haber & Knut-
son, 2010; O’Doherty et al., 2003). Motivational orientation 
is generated by interactions among these neurocircuitries, 
through knowledge of stimulus values, self/other refer-
ences, and incentive salience.

Though several studies have explored the neural under-
pinnings of a single achievement motivation dimension (i.e., 
either pro/pre or self/other dimensions), to our knowledge, 
no brain imaging study has yet investigated both simultane-
ously. Based on above mentioned theoretical backgrounds, 
we designed a task with four achievement motivation ori-
entations (i.e., promotion, prevention, mastery/self, and 
performance/other) from two primary motivational dimen-
sions (i.e., pro/pre and self/other dimensions). We used a 
logistic regression model to infer the degree of influence of 
each achievement motivation orientation on the individual’s 
behavioral performance. Next, we applied data clustering 
algorithms, which have been increasingly used in many dif-
ferent study fields for classification by maximizing a cer-
tain similarity condition (Antunes, 2021; Kou et al., 2014; 
Kou et al., 2020; Li & Xu, 2021). Using a hypothesis-free 
data-driven unsupervised clustering algorithm, we distin-
guished groups of individuals by behavioral similarities 
to examine group-specific behavioral characteristics and 
the involved neural networks. To integrate the behavioral 
measurements into neural evidence, we performed several 
whole-brain voxel-level analyses using voxel-based mor-
phometry (VBM) and surface-based morphometry (SBM) 
to identify the neural differences in intrinsic structural archi-
tectures underlying each type of achievement motivation 
orientation. To further identify group-specific functional 
networks in terms of the local spontaneous neural activity 
and functional connectivity (FC), we performed amplitude 
of low-frequency fluctuation (ALFF) and seed-based FC 
approaches to resting-state functional MRI (rsfMRI) data. 
Given the aforementioned networks that are associated with 
achievement motivation, we hypothesized that the pro/pre 
dimension would associate more with regions in the valua-
tion and salience network, whereas the self/other dimension 
would relate more to regions belonging to the DMN.
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Methods

Participants

All data in this study were collected as part of the Psycho-
logical and Neural Mechanisms for Predicting Academic 
Achievement study. For said study, participants were asked 
to fill out a series of questionnaires (such as their achievement 
goals, motivation, time perspectives, social orientation, self-
construal, and personality traits), performed several choice 
behavioral tasks (including a modified incentive delay task, 
an intertemporal choice task, and a risk tolerance task), and 
underwent brain scans. The scanning session consisted of 
high-resolution T1-weighted anatomical MRI, rsfMRI, dif-
fusion tensor imaging, and fMRI during cognitive tasks. All 
participants had normal or corrected-to-normal vision with 
no significant medical illness. In this study, we used data 
from the modified incentive delay task, T1-weighted MRI, 
and rsfMRI to examine anatomical and functional neural 
signatures of achievement motivation. All participants were 
young healthy adults that provided written informed con-
sent before participation.

Of all participants (n = 115), 102 completed both the 
incentive delay task and brain scans. We excluded two of 
them due to either poor-quality brain images (n = 1) or as 
an outlier on behavioral performance (n = 1). Therefore, 
100 participants (52/48 males/females; age [mean ± SD], 
22.2 ± 2.88 years; the duration of education, 15.02 ± 1.29 
years) were used for the final analysis.

Task

We used a modified version of the monetary incentive 
delay task (Fig. 1), developed by Knutson et al. (Knutson & 
Gibbs, 2007), in the context of achievement motivation ori-
entations. The task consisted of five conditions: four derived 
from the combination of regulatory focus [i.e., promotion 
vs. prevention] and social comparison standard [i.e., self vs. 
other], along with one control condition not associated with 

any motivational dimension. For all conditions, each trial 
comprised four phases: cue presentation, anticipation, tar-
get presentation, and feedback. During the cue presentation 
phase, a cue indicating one of five conditions was presented: 
self-promotion (press a button faster than my reaction time 
(RT), that is, the average RT of accumulated behavioral 
responses while performing a task), self-prevention (press 
a button not slower than my RT), other-promotion (press a 
button faster than others’ RT, that is, the average RT of the 
subjects who participated in this study before me), other-
prevention (press a button not slower than others’ RT), and 
control (no feedback). During the target presentation phase, 
participants had to press a button as fast as possible while 
each trial’s target was displayed. Then, a feedback was pre-
sented to subjects according to their responses. All partici-
pants completed a practice session of the task to understand 
how to complete it and to provide an estimate of each indi-
vidual’s RT for standardizing the task difficulty; mean RT 
during the practice task was used as target duration in the 
first trial. To control the task difficulty, the target duration 
decreased 30 ms on the next trial after a correct response and 
increased 40 ms on the next trial after an incorrect response.

Behavioral model and hierarchical cluster analysis

To infer the degree of influence of each motivational feature 
on the individual’s hit/miss probability, we used a logistic 
regression model. In this model, five features were included 
to estimate the extent to which the dimensions or features 
affected individual’s response: two features each from pro/
pre and self/other dimensions and difficulty levels. The dif-
ficulty levels modeled the current target durations, either 
increasing or decreasing based on whether the previous 
trial’s response was correct or not, and coded as follows: 
Dt+1 = Dt − 1 for an incorrect trial, Dt+1 = Dt +1 for a correct 
trial, and D0 = 0 for the first trial. The dependent variable y 
denotes each participant’s hits and misses, and the indepen-
dent variable x denotes the 5 features. The beta coefficient 
β indicates how much individual’s hit/miss probability was 

Fig. 1 Task design. For all 
conditions, each trial comprised 
four phases: cue presentation, 
anticipation, target presentation, 
and feedback. During the cue 
presentation phase, a cue indicat-
ing one of five conditions was 
presented: self-promotion (press 
a button faster than myself), self-
prevention (press a button not 
slower than myself), other-pro-
motion (press a button faster than 
others), other-prevention (press 
a button not slower than others), 
and control (no feedback)
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www.fil.ion.ucl.ac.uk/spm/; Wellcome Department of Cog-
nitive Neurology), using MATLAB R2021b (Mathworks). 
For VBM analyses, images were segmented into gray mat-
ter (GM), white matter (WM), and cerebrospinal fluid (CSF) 
components, and then spatially registered using a CAT12’s 
default setting. All images were inspected for image qual-
ity and homogeneity. Images were smoothed with a Gauss-
ian kernel of 8mm. For SBM analyses, we estimated both 
cortical thickness and sulcus depth; cortical thickness was 
defined as the distance between WM and GM voxels based 
on the projection-based thickness method (Dahnke et al., 
2013) and the sulcus depth with square root function trans-
formation was defined as the Euclidean distance between the 
central surface and the convex hull. Images were smoothed 
using a Gaussian kernel with a full-width-half-maximum 
(FWHM) of 20mm.

To determine differences in structural brain features 
between groups, a two-sample t-test was performed to com-
pare the GM volume with age, sex, and total intracranial 
volume (TIV) as covariates. The same statistical analysis 
was conducted for each cortical thickness and sulcus depth 
data with age and sex as covariates. To correct for multiple 
comparisons, we used a threshold of voxel-wise P < 0.001 
and cluster-level P < 0.05 family-wise error corrected 
(Eklund et al., 2016).

To confirm our findings of group-specific structural dif-
ferences on motivational orientations, we implemented 
whole-brain multiple regression analyses to characterize the 
structural brain variables relevant to four β of interests (βpro, 
βpre, βself, and βother) in all groups. In these analyses, each 
structural image map along with all four βs (βpro, βpre, βself, 
and βother) were included and controlled for age, sex, and 
TIV as covariates in the VBM, and for age and sex in the 
SBM.

Functional data analysis

After discarding the first four volumes, fMRI data were 
preprocessed using SPM12 and DPARSFA toolbox (www.
rfmri.org/DPARSF) (Chao-Gan & Yu-Feng, 2010). Prepro-
cessing steps consisted of slice-acquisition timing, motion 
correction, nuisance signal regression, spatial normaliza-
tion, spatial smoothing, and band-pass filtering. All data 
showed (i) six motion parameters < 1 voxel (2.5mm or 2.5°) 
in any direction and (ii) a mean frame-wise displacement 
(FD) < 0.30 (Power et al., 2012). To remove the effects of 
head motion and non-neuronal physiological signals, the 
following nuisance parameters were regressed out: Friston 
24-motion parameters, five principal components estimated 
from the WM and CSF mask using the anatomical compo-
nent-based noise correction method [aCompCor; (Behzadi 
et al., 2007)], and a linear detrending term. Afterwards, 

modulated by each motivational feature and difficulty level. 
β0 represents the intercept, which is the performance rate in 
the control condition.

The model was implemented as below, and experimen-
tal variables were dummy coded, with “1” referring to each 
experimental variable, and “0” referring to all other condi-
tions, to extract each feature for subsequent model-based 
brain imaging analyses.

Logit(p(y) = 1) = β0 + βproxpro + βprexpre + βselfxself 
+ βotherxother + βdifficultyxdifficulty

To categorize groups according to their behavioral simi-
larities, the β estimated from all participants was used to 
perform agglomerative hierarchical clustering analysis with 
MATLAB (release R2021b, the MathWorks, Inc., Natick, 
Massachusetts) as the individual weighting of each fea-
ture (βpro, βpre, βself, and βother) may vary in our motivational 
study paradigm. The hierarchical clustering analysis was 
based on Ward’s method to combine pairs of clusters at each 
step while minimizing the sum of square errors from the 
cluster mean. The Euclidean distance approach was used to 
measure the distance values. To find the optimal number of 
clusters, we used Mojena’s stopping rule (Mojena, 1977), a 
well-accepted rule for number of clusters (Milligan & Coo-
per, 1985).

Brain imaging

Image acquisition

All images were obtained using a 3-T scanner (Siemens 
Magnetom Trio; Erlangen, Germany). High-resolution 
T1-weighted anatomical images were acquired using a 
3D magnetization-prepared, rapid-acquisition gradient 
echo sequence [repetition time (TR) = 1,900 ms, echo time 
(TE) = 2. 52 ms, flip angle (FA) = 9°, voxel size = 1.0 × 1.0 
× 1.0mm, 192 sagittal slices]. For each participant, 155 
functional images were acquired using T2*-weighted, echo-
planar imaging (EPI; TR = 2,000 ms, TE = 20 ms, FA = 90°, 
voxel size = 3.0 × 3.0 × 3.0mm, 42 interleaved axial slices). 
Participants were asked to relax with their eyes open and 
maintain fixation during rsfMRI. An eye-tracker mounted 
on a head coil was used to monitor the participants’ eyes and 
ensure they did not fall asleep during the scan.

Structural data analysis

T1-weighted MRI scans are analyzed in both VBM and 
SBM approaches using the CAT12 toolbox (Department of 
Psychiatry, University of Jena, Jena, Germany; http://www.
neuro.uni-jena.de/cat) within the SPM12 framework (http://

1 3

http://www.fil.ion.ucl.ac.uk/spm/
http://www.rfmri.org/DPARSF
http://www.rfmri.org/DPARSF
http://www.neuro.uni-jena.de/cat
http://www.neuro.uni-jena.de/cat
http://www.fil.ion.ucl.ac.uk/spm/


Current Psychology

functional brain variables related to four β of interests 
(βpro, βpre, βself, and βother). In these analyses, each ALFF 
map along with all four βs (βpro, βpre, βself, and βother) were 
included while controlling for age and sex as covariates.

Results

Behavioral results

For hierarchical clustering of participants’ behavior data, 
we determined the optimal number of clusters to be two, of 
which distinct subgroups emerged with different patterns of 
behavioral responses (Online Resource 1). Based on cluster-
ing, Group#1 (i.e., the pro/pre group, n = 52) showed better 
performance in the pro/pre dimension, while Group#2 (i.e., 
the self/other group, n = 48) exhibited higher performance 
in the self/other dimension. A Mann–Whitney U-test, com-
paring the pro/pre group with the self/other group in each 
of five βs, confirmed that Group#1 had significantly bet-
ter performance on the pro/pre dimension than Group#2 
and that Group#2 had significantly better performance on 
the self/other dimension than Group#1 (ps < 0.001 in the 
βpro, βpre, βself, and βother between groups; p = 0.338 in the 
βdifficulty between groups; Fig. 2). There were no significant 
demographic differences in age (22.33 ± 3.21 for Group#1; 
22.06 ± 2.50 for Group#2; p = 0.881) and sex (29 males 
and 23 females for Group#1; 23 males and 25 females for 
Group#2; p = 0.435) between the two groups.

Structural brain imaging results

VBM analyses revealed that the left PPC GM volume 
was higher in Group#1 than in Group#2 (x, y, z coordi-
nates = − 26, − 82, 39; z-value = 4.15; uncorrected signifi-
cance level p < 0.001; FWE-corrected extent p < 0.05; Fig. 
3a). We also found higher sulcus depth in the right PPC in 

the residual images were spatially normalized to the MNI 
space, smoothed using a FWHM of 6-mm, and band-pass 
filtered (0.01–0.1Hz).

To investigate whether the morphological differences 
are also associated with the functional brain networks, we 
performed seed-based FC analysis using the region identi-
fied in VBM analysis as seed. That is, we defined a 5-mm 
radius spherical seed centered on the PPC [MNI, − 26 − 82 
39] identified from the VBM analysis (see Results). Next, 
the Pearson correlation coefficients between the mean time 
series of the seed and that from all other voxels were cal-
culated. The correlation coefficients were then Fisher r-to-z 
transformed. The two-sample t-test was performed to test 
the group differences from the whole-brain seed-based FC 
maps using age and sex as covariates.

To investigate regional differences in brain function, par-
ticularly in terms of low-frequency local fluctuation in brain 
activity between the two groups at the whole-brain voxel 
level, we further performed ALFF analysis using DPAR-
SFA default settings. One-sample t-tests with these ALFF 
functional maps were performed to create mask images for 
between-group analyses to restrict significant voxels across 
individuals. Then, two-sample t-tests with the mask images 
were used to compare ALFF functional maps between 
groups.

Last, to explore whether the group differences in the local 
neural activity may be associated with differences in its FC, 
we performed the abovementioned seed-based FC analysis 
to the region (i.e., mPFC [MNI, − 6, 54, 3]; see Results) 
identified from ALFF analysis. Then, a two-sample t-test 
was conducted to identify between-group FC differences. 
The results of all analyses were obtained using a threshold 
of voxel-wise P < 0.001 and cluster-level P < 0.05 family-
wise error corrected, consistent with structural analyses.

To examine the functional local neural activity charac-
terized by each motivational orientation, we implemented 
whole-brain multiple regression analyses to examine the 

Fig. 2 Behavioral results of 
βs (βpro, βpre, βself, βother, and 
βdifficulty) from group compari-
son. The hierarchical clustering 
algorithm separates our data into 
two different subgroups, one for 
the pro/pre group (Group#1) and 
the other for the self/other group 
(Group#2). Group#1 showed sig-
nificantly better performance in 
the pro/pre dimension, compared 
to the Group#2 (p < 0.001 in the 
βpro and βpre). Group#2 exhibited 
significantly higher performance 
than Group#1 (p < 0.001 in the 
βself and βother). The difficulty 
feature showed no significant 
group differences (p = 0.338 in 
the βdifficulty)
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(x, y, z coordinates = 6, − 39, 15; z-value = 3.79; Fig. 4c) 
in Group#2 (vs. Group#1). This result verified that self/
other-oriented individuals are susceptible to processing one-
self and others information by demonstrating stronger FC 
between the mPFC and PCC in the DMN.

Further multiple regression analyses with four βs (βpro, 
βpre, βself, and βother) were conducted. βpro was positively 
correlated with the right OFC (x, y, z coordinates = 39, 51, 
− 9; z-value = 4.95; uncorrected significance level p < 0.001; 
FWE-corrected extent p < 0.05; Online Resource 3a), but 
negatively correlated with the right parietal cortex (x, y, z 
coordinates = 9, − 42, 69; z-value = 4.67; uncorrected sig-
nificance level p < 0.001; FWE-corrected extent p < 0.05; 
Online Resource 3b). On the other hand, βpre showed a posi-
tive correlation with the right parietal cortex (x, y, z coordi-
nates = 3, − 33, 69; z-value = 4.39; uncorrected significance 
level p < 0.001; FWE-corrected extent p < 0.05; Online 
Resource 3c) and right visual cortex (x, y, z coordinates = 6, 
− 90, 24; z-value = 4.25; uncorrected significance level 
p < 0.001; FWE-corrected extent p < 0.05; Online Resource 
3d). However, βpre exhibited a negative correlation with the 
right OFC (x, y, z coordinates = 45, 45, − 6; z-value = 5.07; 
uncorrected significance level p < 0.001; FWE-corrected 
extent p < 0.05; Online Resource 3e). Notably, the right OFC 
and parietal cortex showed opposite patterns of correlations 
with the βpro and βpre, suggesting that the promotion- and 
prevention-focused orientations may differently relate to 
local FC within the frontal-parietal interaction.

Group#1 than in Group#2 (x, y, z coordinates = 23, − 63, 
44; z-value = 4.44; uncorrected significance level p < 0.001; 
FWE-corrected extent p < 0.05; Fig. 3b), though in different 
brain hemispheres. There were no significant differences in 
cortical thickness maps between groups.

Further multiple regression analyses with four βs (βpro, 
βpre, βself, and βother) were conducted as confirmatory analy-
sis. When examining βpro jointly with βpre, we found a posi-
tive correlation in the right PPC (x, y, z coordinates = 24, 
− 69, 33; z-value = 5.03; uncorrected significance level 
p < 0.001; FWE-corrected extent p < 0.05; Online Resource 
2); the same region observed in the sulcus depth result. 
There were no significant correlations between any brain 
regions and self/other dimension.

Functional brain imaging results

We selected the above-identified left PPC region as seed and 
generated seed-based FC maps. Both groups exhibited sig-
nificant FC between the PPC-seed and regions including the 
dorsolateral prefrontal cortex and anterior inferior parietal 
lobule, as well as the cuneus, fusiform gyrus, and lingual 
gyrus. However, there were no significant differences in 
PPC seed-based FC maps between groups.

To further examine whether there were group differences 
in terms of local neural activity at the whole-brain voxel-
level, we performed an ALFF analysis. The two-sample 
t-test on the ALFF maps showed significantly higher ALFF 
values in the left mPFC region (x, y, z coordinates = − 6, 
54, 3; z-value = 3.97; Fig. 4a) in Group#2 compared to 
Group#1. Furthermore, one-sample t-test using seed-based 
FC maps with the left mPFC region as a seed showed the 
DMN in both groups (Fig. 4b). Then, a two-sample t-test 
revealed increased mPFC seed-based FC with the PCC 

Fig. 3 VBM and SBM results. (a) The GM volume in the PPC significantly increased in the pro/pre group (x, y, z coordinates = − 26, − 82, 39; 
z-value = 4.15) (b) Deeper sulcal depth was observed in the pro/pre group compared to that in the self/other group (x, y, z coordinates = 23, − 63, 
44; z-value = 4.44). Sulcal depth image was thresholded at p < 0.01 uncorrected for visualization purposes
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The present study showed higher GM volume of the PPC 
in the pro/pre group compared to that of the self/other group. 
This result can be interpreted according to valuation, since 
promotion and prevention goal types correspond to posi-
tive and negative value, respectively (Kahnt et al., 2014). 
Previous studies have shown that the PPC, as a member of 
the valuation network, represents value signal processing, 
as well as salience (Iyer et al., 2010; Jocham et al., 2014; 
Peck et al., 2009). Hence, individuals may have their own 
behavioral predispositions in their weighting of positive or 
negative values; these value-based behavioral patterns can 
be characterized by particular brain structural patterns. The 
PPC has also been associated with stimulus-driven attention 
such as perceptual salience and spatial attention, and it thus 
underlies numerous cognitive processes implying also cor-
tical and subcortical regions (Corbetta et al., 2008; Theeu-
wes, 1994). Jocham and colleagues also discovered that this 
area was correlated with stimulus-driven decision-making 
processing in short time periods (Jocham et al., 2014). Pro-
motion and prevention behavioral predispositions are more 
instantaneously aroused when people encounter informa-
tive stimuli (Elliot & McGregor, 2001). Therefore, the more 
instant decision-making process of promotion and preven-
tion may be underpinned by the PPC’s neural signature.

In line with the VBM result, we observed deeper sulcal 
depth in the right PPC, although the brain lateralization was 
opposite of that obtained from the VBM analysis. Although 
the mechanism of sulcal depth is not yet been fully under-
stood, this finding could imply that the increase of the GM 
volume and sulcal depth were related. Notably, as confirmed 
by multiple regression analyses, the same right PPC region 
was positively correlated with combined contrasts of βpro 
and βpre. Therefore, the structural increase in the PPC is 
predicted by individuals leaning more toward the pro/pre 
dimension. Our data extend the neural representation of 
individuals’ promotion and prevention tendencies into the 
parietal region, especially the PPC, by showing its neuro-
anatomical correlates.

Discussion

In the current study, based on the theoretical and conceptual 
foundations of achievement motivation, we investigated 
whether behavioral characteristics were classified by a 
hypothesis-free, data-driven approach and furthermore, this 
classification would lead to neural differences. As results, 
we found that the agglomerative unsupervised clustering 
approach naturally classified our behavioral data into two 
subgroups according to behavioral patterns on achievement 
motivation orientations; these subgroups showed intrinsic 
group-specific structural and functional neural signatures. 
Compared to Group #2, Group#1 had better performance 
in promotion- and prevention-focused motivation and these 
motivational orientations were significantly associated with 
structural brain variables in the PPC, which belongs to the 
valuation network. This region thus serves as a neural pre-
dictor for promotion- and prevention-focused motivational 
processing, as confirmed by multiple regression analyses. 
However, compared to Group #1, Group#2 had better per-
formance in self/other dimension and had significantly 
higher local brain fluctuations in the mPFC and increased 
FC between the mPFC and PCC, which belong to the DMN. 
Taken together, our findings indicate that the two differ-
ent types of achievement motivation dimensions can be 
characterized by different neural structures and functional 
networks.

Applying a logistic regression model, we could examine 
four distinct motivational orientations derived from the two 
conceptualized dimensions. When we performed unsuper-
vised hierarchical clustering on these four orientations, we 
found two subgroups naturally matching the original two 
dimensions. Our behavioral results indicate that each sub-
group preferentially placed more attention on their preferred 
pro/pre or self/other dimension, and that this autonomic 
attentional priority eventually led to better performance in 
their respective conditions.

Fig. 4 Voxel-level, whole-brain rsfMRI analyses. (a) The whole-brain ALFF result exhibited higher left mPFC ALFF in the self/other group com-
pared to that in the pro/pre group (x, y, z coordinates = − 6, 54, 3; z-value = 3.97). (b) Using the mPFC as seed region, one-sample t-test with ALFF 
functional maps served to create mask images for between-group analyses to restrict significant voxels across individuals. As a result, the DMN 
was observed in both groups (red for the self/other group; blue for the pro/pre group). (c) With the left mPFC as a seed region, the FC between the 
mPFC and PCC significantly increased in the self/other group relative to that in the pro/pre group (x, y, z coordinates = 6, − 39, 15; z-value = 3.79)
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was not collected for a longitudinal study. Future longitudi-
nal research is thus needed to clarify this issue.

Conclusion

The current study used unsupervised clustering on behav-
ioral responses to categorize people by their similarities 
in achievement motivation orientations and investigated 
the associated neural mechanisms using brain imaging 
data unrelated to the task, including T1-weighted MRI and 
rsfMRI data. Our results provide novel insights on the mor-
phological features in the PPC underlying the motivational 
processing of subjective preferences toward promotion- and 
prevention-focused orientations. This finding was under-
pinned by multiple regression analysis which verified PPC 
as a neural predictor for promotion- and prevention-focused 
motivational orientations. We also confirmed previous find-
ings of functional coupling between the mPFC and PCC 
within the DMN related to self/other processing. Achieve-
ment motivation is a multidimensional process that involves 
neural networks related to various cognitive functions; our 
structural and functional findings could allow future identi-
fication of individual differences in achievement motivation.
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In this study, seed-based FC using the left PPC as seed 
region showed neural interactions with the dorsolateral pre-
frontal cortex and anterior inferior parietal lobule, as well 
as the cuneus, fusiform gyrus, and lingual gyrus. However, 
these neural networks did not significantly differ between 
groups. This may mean that the PPC works with the pre-
frontal regions in both groups, extending its FC to neigh-
boring neural regions including the cuneus, fusiform and 
lingual gyrus, suggesting underlying planning and visualiz-
ing for forthcoming actions during motivational goal pursuit 
(Detloff et al., 2020).

Furthermore, self/other oriented individuals exhibited 
increased ALFF in the mPFC; interestingly, the mPFC 
seed-based FC analysis revealed FC with the DMN in both 
groups. As a result of the group differences on mPFC seed-
based FC maps, the self/other group, compared to the pro/
pre group, showed increased FC between the mPFC and 
PCC, which are core regions in the DMN (Andrews-Hanna 
et al., 2014; Raichle et al., 2001). In rsfMRI data, the ALFF 
measures the amplitude of regional spontaneous neuronal 
activity (Yang et al., 2007; Zang et al., 2007), whereas the 
FC determines temporal synchrony between distant brain 
regions. The PCC is a heterogeneous area in functional 
terms and is involved in nearly all tasks that require self-
generated processing. Similarly, the mPFC is engaged in 
decision-making process relevant to other people. Both 
the mPFC and PCC have an extensive pattern of connec-
tions and, as members of the DMN, a significant functional 
role inferring the thoughts and feelings of self and others. 
Therefore, our finding suggests that individuals who tend 
to be more sensitive to self and others have higher intrinsic 
local functional activity in the mPFC and increased func-
tional coupling with the PCC. Additionally, as shown from 
the multiple regression analyses with the ALFF maps, the 
right OFC and part of the superior parietal lobule (BA 5) 
showed opposite patterns of correlations with promotion 
and prevention, respectively. This result may indicate that 
the achievement motivation orientation of promotion or pre-
vention could be differentiated by the local brain activity 
within the frontal-parietal interaction.

Several limitations of our study should be considered. 
First, though the logistic regression model could inde-
pendently distinguish each of the four motivational ori-
entations, our results demonstrated behavioral and neural 
differences according to the two original pro/pre and self/
other dimensions. To outset this limitation, we performed 
multiple regression analyses to identify the neural predic-
tors associated with each of the four motivational orienta-
tions. Second, it is uncertain whether our neural findings are 
a causal role for the participants’ behavior or if they resulted 
from individual behavioral differences, since our sample 
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