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To improve future decisions, people should seek information based on the value of information (VOI), which depends on the
current evidence and the reward structure of the upcoming decision. When additional evidence is supplied, people should
update the VOI to adjust subsequent information seeking, but the neurocognitive mechanisms of this updating process
remain unknown. We used a modified beads task to examine how the VOI is represented and updated in the human brain
of both sexes. We theoretically derived, and empirically verified, a normative prediction that the VOI depends on decision
evidence and is biased by reward asymmetry. Using fMRI, we found that the subjective VOI is represented in the right dorso-
lateral prefrontal cortex (DLPFC). Critically, this VOI representation was updated when additional evidence was supplied,
showing that the DLPFC dynamically tracks the up-to-date VOI over time. These results provide new insights into how
humans adaptively seek information in the service of decision-making.
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For adaptive decision-making, people should seek information based on what they currently know and the extent to which
additional information could improve the decision outcome, formalized as the VOI. Doing so requires dynamic updating of
VOI according to outcome values and newly arriving evidence. We formalize these principles using a normative model and
show that information seeking in people adheres to them. Using fMRI, we show that the underlying subjective VOI is repre-
sented in the dorsolateral prefrontal cortex and, critically, that it is updated in real time according to newly arriving evidence.
Our results reveal the computational and neural dynamics through which evidence and values are combined to inform con-
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stantly evolving information-seeking decisions.
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Introduction

Information seeking is critical for adaptive decision-making. To
improve future decisions, we collect information that would help
us predict decision outcomes. For instance, we check the weather
forecast to decide whether to go out for a hike, and we read about
the policies and characters of candidates to decide how to vote.
Recent work raises the possibility that deficits in information
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seeking underlie some psychiatric diseases such as schizophrenia
and obsessive-compulsive disorder (Ross et al, 2015; Dudley
et al,, 2016; Hauser et al., 2017; Baker et al., 2019).

In economic theories, information seeking should be primar-
ily driven by information instrumentality, or how much it would
help the agent acquire rewards in an upcoming decision.
Instrumentality is formally characterized as the value of informa-
tion (VOI), defined as the improvement in the expected value
that the agent can achieve by making the decision based on the
information (Edwards, 1965; Howard, 1966). Although this
normative VOI theory does not incorporate psychological
motives of curiosity (Kreps and Porteus, 1978; Caplin and
Leahy, 2001; Kidd and Hayden, 2015; Kobayashi et al., 2019),
it successfully predicts how humans acquire costly informa-
tion that can be used to maximize rewards (Edwards and
Slovic, 1965; Wendt, 1969; Wilson et al., 2014; Kobayashi
and Hsu, 2019). The theory is further supported by evidence
that the VOI is encoded in reward-related regions, such as
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Figure 1.

Experimental paradigm. We adopted the beads task with three key modifications: asymmetry in the reward structure, initial evidence before information seeking, and an updating

event (one extra bead). 4, Participants observed a number of beads drawn from a jar and made a bet on its composition. Each bead was marked with a face or a house. There were two possi-
ble jar compositions: 60% face beads and 40% house beads, or 40% face beads and 60% house beads. The jars are colored here only for illustrative purposes. B, Reward structure. Participants
earned more reward points by correctly betting on one of the two jar types. The experiment consisted of two blocks, and in each block, one of the two reward structures was presented in
each trial. The first block involved a baseline shift, and the second block involved a scale manipulation. ¢, Trial sequence. In a third of the trials (bet-only trials), participants were presented
with a number of beads from the jar, and they immediately made a bet on its type. In the remaining trials (information-seeking trials), they were presented with the initial beads and an extra
bead, and were then allowed to seek further information by drawing more beads from the jar before making a bet on one of the two jars. Participants could draw as many beads as they
needed within 5 s, but each additional draw incurred a cost (0.1 point). The extra bead was presented to evoke updating in the value of information.

the nucleus accumbens, ventromedial prefrontal cortex, an-
terior cingulate cortex, and dorsolateral prefrontal cortex
(DLPFC) (Bromberg-Martin and Hikosaka, 2009, 2011;
Kang et al., 2009; Krebs et al.,, 2009; Gruber et al., 2014;
Charpentier et al., 2018; Kobayashi and Hsu, 2019; White et
al., 2019; Kaanders et al., 2020; Lau et al., 2020).

The notion that the VOI is based on its instrumentality has
two important implications. First, the VOI should not be deter-
mined by how much the information would contribute to accu-
rate predictions of the state of the world but rather how much it
would help the agent maximize rewards. Therefore, the VOI
depends on the reward structure of the upcoming decision (e.g.,
the value of a weather forecast depends on how much the hiker
prefers different weather conditions; those who don’t mind hik-
ing in the rain may not value the forecast as much as those who
do). Second, the VOI depends on decision evidence that the
agent already possesses before information seeking. The VOI
tends to be smaller when the agent already has more evidence
because the agent may already know what to do, and additional
information is less likely to influence the agent (e.g., hikers may
not need to check the weather forecast if other hikers have al-
ready informed them that it is going to snow). Thus, the agent
needs to combine the available decision evidence with the reward
structure to assess the VOI and seek information adaptively.

Crucially, when the decision evidence available to the agent
changes, the agent should update the VOI. Situations requiring
such updates are ubiquitous, either because the environment gradu-
ally supplies evidence over time (e.g., a recent weather forecast is
more accurate than an old one) or because the agent sequentially
samples multiple pieces of information (the hiker can check multi-
ple sources of weather forecasts). Despite the importance, to the
best of our knowledge, no study has examined how the human
brain updates the VOI based on the most recent decision evidence.

We conducted an fMRI study to examine whether human in-
formation-seeking behavior is sensitive to reward structure and

current decision evidence, and how human brains track the up-
to-date VOI after acquiring additional evidence. First, we theo-
retically derive, and empirically demonstrate, a simple and gener-
alizable prediction for how information seeking should be biased
by asymmetry in a reward structure. Second, we show that the
right DLPFC tracks the up-to-date VOI over time as a new piece
of evidence is supplied. These results suggest that the right
DLPFC plays a critical role in information seeking in dynamic
decision-making contexts.

Materials and Methods

All procedures were approved by the Institutional Review Board at the
University of Pennsylvania. Our experiment was not preregistered.

Participants. Fifteen people (11 female, 4 male, 18-28 years old,
mean = 21.27, SD = 2.79) participated in the experiment. The a priori
target sample size for this study was 16, determined according to effect
sizes in previous studies that looked for updating signals using fMRI
(McGuire et al., 2014). However, when the scanner used to collect data
from 15 participants went down for an extensive period of repairs
(because of a quench event during a flood), we opted to proceed to our
planned analyses to avoid the need to pool data across different scanning
conditions. All participants provided informed consent in accordance
with the Declaration of Helsinki.

Experimental Design. We adopted a variant of the beads task
(Phillips and Edwards, 1966; Huq et al., 1988; Furl and Averbeck, 2011);
the participant was presented with a jar containing two types of beads
and asked to guess its composition (i.e., which type made up the major-
ity of the beads) by drawing some beads from the jar (Fig. 1A4). Our vari-
ant had three important features. First, the participant was rewarded for
identifying the correct jar composition, but the reward structure was
asymmetric; the participant could earn more rewards by correctly bet-
ting on one jar type than the other (Fig. 1B). Second, a variable number
of beads was drawn from the jar and presented to the participant at the
beginning of each trial, empirically manipulating the evidence available
to participants before they seek information. Third, an extra bead was
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presented on a subset of trials to update the initial evidence. These fea-
tures allowed us to examine how the brain represents and updates the
VOI based on evidence that changes over time.

The experiment consisted of two interleaved trial types, bet-only tri-
als and information-seeking trials (Fig. 1C). In the bet-only trials, the
participant was first presented with a number of beads drawn from the
jar. Each bead was marked with a rounded picture of a face or a house
(one picture for the face or the house was used throughout the experi-
ment). Beads marked with a face were presented to the left and those
marked with a house to the right. The participant was told that these
beads were drawn from one of two jars: a face-majority jar, which con-
sisted of 60% face beads and 40% house beads, and a house-majority jar,
which consisted of 60% house beads and 40% face beads. Rewards for
correct and incorrect bets (in points) were also presented in green and
gray, respectively. Rewards for a bet on the face-majority jar were shown
above the face beads, and rewards for a bet on the house-majority jar was
above the house beads. Rewards for a correct bet on one jar were numeri-
cally larger than rewards for a correct bet on the other jar (reward asym-
metry), whereas an incorrect bet on either jar yielded the same rewards
(Fig. 1B). After the presentation of the initial beads for 3 s, the participant
was asked to make a bet. During the bet phase of the task, face and house
beads were separately outlined by magenta boxes, and the participant
could press the left or right button on a response box to bet on the face- or
house-majority jar. Trials in which the participant did not make a bet
within 3 s were terminated and discarded from the analysis.

In the information-seeking trials, the participant was first presented
with the initial beads screen (same as the bet-only trials), followed by a
blank screen (0-2 s). Next, an extra bead drawn from the jar was pre-
sented, either marked with a face or a house (1 s), which was added to the
corresponding group of beads on the initial screen (0-2 s). The participant
was then asked to decide whether to draw more beads from the jar before
making a bet on its composition (information-seeking phase). Two
choices appeared on the screen, draw and bet, and the participant pressed
one button to draw one more bead and another button to terminate the
information-seeking phase and proceed to the bet (the sides of the options
were randomized across trials). The participant was allowed to draw as
many beads as desired within 5 s, and a face or house bead was added to
the screen every time the participant pressed the draw button. The partici-
pant was told that each draw incurred a constant small cost (0.1 point).
Once they pressed the bet button (or when 5 s have passed), participants
were presented with the bet screen (same as the bet-only trials).

The task was programmed in MATLAB (MathWorks) using MGL
(http://justingardner.net/mgl/) and SnowDots (http://code.google.com/
p/snow-dots/) extensions.

Procedure. In a separate task session before scanning, participants
received extensive training on the task, in which various aspects of the
task were gradually introduced (betting on the jar composition, asym-
metric rewards, costly draws, and multiple reward structures). During
the subsequent session, participants completed the task inside the scan-
ner. Participants gave responses using an MRI-compatible button box.
They were compensated based on the total points they acquired in the
scanning session (500 points = $1.00).

The scanning experiment consisted of two blocks, which differed in
reward structure (Fig. 1B). In the first block (the baseline block), one of
the two reward structures, (Ry, Ry, R;) = (70, 10, 0) or (170, 110, 100),
was randomly presented in each trial, where Ry is the reward for a cor-
rect bet on the high-reward jar, Ry, is the reward for a correct bet on the
low-reward jar, and R; is the reward for an incorrect bet; thus, partici-
pants earned a baseline reward of 100 points regardless of their bet in
half of the trials. In the second block (the scale block), one of the two
reward structures, (Ry, Ry, Ry) = (70, 10, 0) or (7, 1, 0), was randomly
presented in each trial; thus, the participant earned a tenth of the
rewards in half of the trials. Each block consisted of two scanning runs,
one in which the high-reward jar was the face-majority jar and one in
which the high-reward jar was the house-majority jar; the order was
counterbalanced across participants.

On each trial, the participant was presented with 20 or 30 initial
beads from the jar. The difference in the number of initial beads marked
with a face or house was uniformly sampled from a discrete set of values
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ranging from —10 to 10 in increments of 2. Unbeknown to the partici-
pant, the true jar type was stochastically determined following the
Bayesian posterior conditional on the initial bead difference (Eq. 4). In
the information-seeking trials, the type of the extra bead presented and
all additional beads drawn by the participant (face or house) were sto-
chastically determined based on the hidden jar type (Eq. 1). The partici-
pant was not provided with feedback on bet accuracy or rewards on a
trial-by-trial basis. Participants were, however, informed of the total
number of points they had accumulated at the end of each run.

Theory. Normative predictions about the VOI, or how much an opti-
mal agent should pay for information, were derived under assumptions
that the agent conducts full-Bayesian inference on the jar type, determin-
istically makes an optimal choice to maximize the expected value (EV),
is risk neutral, and optimally seeks information based on instrumental-
ity, or how much it would improve the EV of the subsequent bet choice.
Our theoretical framework is consistent with previous Bayesian models
(Furl and Averbeck, 2011; Moutoussis et al., 2011), except that it explic-
itly examines the effects of the asymmetric reward structure and current
decision evidence on the VOI. Our theoretical framework did not con-
sider any additional information-seeking motives, such as curiosity,
savoring, dread, or uncertainty reduction.

Let sy be the state where the true jar is the high-reward jar and s; the
state where it is the low-reward jar. Let ay be the action to bet on sy and
ar, the action to bet on s;. Let us further refer to the majority beads in
the high-reward jar as high-reward beads and the majority beads in the
low-reward jar as low-reward beads (e.g., if the high-reward jar is the
house-majority jar, a house bead is a high-reward bead, and a face bead
is a low-reward bead; note that the beads were not directly associated
with rewards per se). The goal for the agent is to choose between ay and
ar to maximize the EV given the current evidence (i.e., the number of
high-reward beads ny and low-reward beads n; drawn from the jar so
far) and the reward structure (Ry, Ry, R;).

The likelihood of drawing a high-reward bead by or a low-reward
bead by conditional on the jar type is known to the agent:

P(bylsu) = P(brlst) = q

where g = 0.6. Thus, the likelihood of observing ny and n;, conditional
on the jar type is:

+ ny nL
P(ny, myfsir) = (””nH”L )P(bH|sH) P(bysi)
+ n
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Using these likelihood functions and Bayes theorem, the posterior
probability of the jar type after observing ny and n, follows:
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P(sy) = 0.5). Because P(sy|npy, ny)+P(sy|ng, ny) = 1, we obtain
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which is a function of the bead difference, ny — n;, [e.g., the posterior is
the same when (ng, n;) = (5, 2) or (15, 12)].

Given the posterior, the agent makes a choice among the following
three options: to bet on sy, to bet on sz, or to seek information and draw
an additional bead from the jar, which incurs a cost cgyay (0.1 point). The
agent should decide whether to draw an additional bead based on the
VOI, or the improvement in the EV of the bet because of the next bead:

VOI(”H, ”L) = EVdraw(”lm ”L) - EVbe((nPh ”L) 5 (5)

where EVyy,y, is the highest EV the agent could achieve after drawing the
next bead (without considering the information-seeking cost), and E Vi
is the highest EV the agent could achieve by making a bet without any
further information. The agent should draw a bead if and only if the
VOI is higher than the drawing cost cgraw. EVpe is the higher of the two
bet EVs based on the current evidence, namely,

EVbet(nPh ”L) = maaXEV(a\nH, ”1‘)7 (6)
where

a e {ay,a}

and

EV(au|ng,ny) = Ry - P(su|nu, ny) + Ry - P(sp|ny, ny)

EV(ag|ny,n;) = Ry - P(sp|nu, ny) + Ry - P(sy|ny, ny).

Because the posterior is determined by the bead difference (Eq. 4),
EVy. is also determined by the bead difference.

To evaluate EV,y, we have to take into account two important facets
of our information-seeking paradigm. First, the content of information
(the type of the next bead, by or by) is stochastic, and second, the agent
can decide whether to draw yet another bead or not after observing the
next bead. Therefore, we have to evaluate the likelihood of the next bead
type and combine it with the EV of an optimal choice conditional on each
bead type. The likelihood of the next bead type based on the current evi-
dence is evaluated according to the posterior on the jar type:

P(by|nu,n) = P(by|su) - P(su|nw, ny) +P(byls) - P(sp|nu, ny)

P(by|ny,ny) = P(b|sy) - P(su|ny, ny)+P(bylsy) - P(sp|ny, ny). (7)

If the next bead is by, it would update the evidence from (ny, n;) to
(ng+1,n). Then the agent can either make an optimal bet and achieve
EVie(ng+1,n,) or pay the cost to draw another bead and achieve
EViraw(nu+1,n1) — Cdraw. Similarly, if the next bead is by, it would
update the evidence to (ny, n;+1), based on which the agent can either
make an optimal bet and achieve EVy,et(np, 1, +1) or draw another bead
and achieve EVguay (1, 1, +1) — Cdray- Therefore, the highest EV the
agent can achieve after drawing an additional bead is

EViraw (g, 1) =
P(by|nw,ny) - max[EVie(ng + 1,11), EVay (0 + 1,11) — Cara] +
P(by|ny, ny) - max[EVie (g, 1y + 1), EVigaw (11, 1 + 1) — Caraw]-
(®)
In Equation 8, EViuyw(ny,ny) in the left-hand side depends on
EViraw(ng+1,nr) and EVpay(npy, ny+1) in the right-hand side because

of the aforementioned sequentiality of information seeking. We thus solved
Equation 8 by backward recursion. Specifically, we arbitrarily assumed that
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the agent cannot draw more than 200 beads, set EV gray (11, 1) = 0 where
ny+n; = 200, and we used Equation 8 to obtain EVguy(np, 1) where
ngtn, =199. We then used Equation 8 recursively to obtain
EViaraw(ng,ny) for all cases where 0<ny+n; <200. Although the
obtained EV gy, (11, n1,) depends on ny+ny, it reaches an asymptote over
the course of recursion quickly. We substituted the asymptotic EVgay, in
Equation 5 and obtained the theoretical VOI as a function of the bead
difference.

The VOI was obtained for each of the three reward structures,
(Ry, Ry, Ry) = (70, 10, 0), (170, 110, 100), and (7, 1, 0). The baseline shift
affects both EVgyay and E Ve by the same amount, which is canceled out
in Equation 5 and does not affect the VOL On the other hand, as c4raw
was not scaled along with rewards and remained the same across condi-
tions (0.1 point), the scale manipulation affects not only the magnitude
but also the shape of EVyy (Eq. 8) and thus the VOI (Eq. 5).

The most important prediction of this theoretical framework is that in-
formation seeking should be biased because of the reward asymmetry. The
VOI takes an inverted U shape as a function of the bead difference, and its
peak is at a moderate negative bead difference (ny — ny = —5). This is
because the information would directly improve the subsequent bet choice;
when nyg — n, = —5, EV(ag|ny, nr) is close to EV(ar|ng, nr), but the
next bead would increase the difference in either direction [if a high-reward
bead by is observed, EV(ay|ny+1,n,)>EV(ay|ng+1,n.); if a low-
reward bead b is observed, EV(ay|ny,n,+1)<EV(ap|ny,n;,+1)].
Therefore, the agent can bet on sy after by and bet on s, after by, and such
flexibility improves the overall EV. In contrast, the VOI is effectively zero
when the bead difference is positive (ny — 1, > 0) because the agent would
bet on sy regardless of the next draw. The VOI is also effectively zero when
low-reward beads outnumber high-reward beads by a large enough margin
(ng — np < —7), because the agent would bet on s; regardless of the next
draw.

This qualitative prediction, a bias in information seeking toward a
negative bead difference, does not depend on most of our assumptions
(e.g., choice optimality, risk neutrality). Information seeking would be
biased as far as the agent is sensitive to the rank order of rewards and the
bead difference. On the other hand, if an agent is not motivated to maxi-
mize rewards but to maximize the accuracy of the prediction (i.e., utility
function U follows U(Ry) = U(Ry) > U(Ry)), the agent would exhibit
unbiased information seeking; the uncertainty about the jar type is deter-
mined by |ny — ny| and is highest when ny = ny, which is when the
agent would draw beads most frequently. Therefore, a bias in informa-
tion seeking would suggest that information seeking is motivated by in-
strumentality of the information for future reward seeking.

Statistical analyses—behavioral data. To examine information-seek-
ing behavior, we analyzed the frequency at which participants drew at
least one bead as a function of the bead difference. We specifically
focused on whether they drew the first bead as a function of the current
evidence and examined if the choice was biased by the reward asymme-
try as theoretically predicted. The relationship between information-
seeking behavior and the bead difference was analyzed using Gaussian
process (GP) logistic regression (Rasmussen and Williams, 2006). GP
logistic regression estimates a latent function that smoothly varies with
the independent variable (the bead difference) and yields likelihoods of
binary choices (whether participants drew a bead in each trial). The esti-
mated latent function can be interpreted as the subjective VOI function
(the higher the VOI is, the more likely participants draw a bead). The
latent function with isotropic squared exponential covariance was esti-
mated using the variational Bayes approximation, as implemented in
Gaussian processes for the Machine Learning Toolbox, version 4.2
(https://github.com/alshedivat/gpml; Rasmussen and Nickisch, 2010).

To test whether information-seeking behavior systematically differed
across blocks and reward conditions within each block, we compared
four models. Model 1 implemented the theoretical prescription that in-
formation seeking is sensitive to the scale manipulation but not to the
baseline manipulation. It thus consisted of three separate latent value
functions, one used in all trials in the baseline block, one used in trials
where (Ry, Ry, R;) = (70, 10, 0) in the scale block, and one used in trials
where (Ry, R, R;) = (7, 1, 0) in the scale block. We constructed several
alternative models. Model 2 postulated different value functions for
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reward conditions not only in the scale block but also in the baseline
block, one for trials where (Ry, Ry, R;) = (70, 10, 0), and another for tri-
als where (Ry, Ry, Ry) = (170, 110, 0) (i.e., four value functions in total).
Model 3 postulated the lack of sensitivity to reward conditions in both
blocks but a separate value function for each block (i.e., two value func-
tions in total), and Model 4 postulated one common value function for
all trials in both blocks. These models were compared based on log likeli-
hood (LL) in leave-one-participant-out cross-validation (LOPO CV) and
leave-one-trial-out cross-validation (LOTO CV). We also adopted the
same analytic approach to the bet choices, comparing the performance
of Models 1-4.

We found that Model 3 outperformed other models for both infor-
mation-seeking and bet choices (see below, Results). To test whether in-
formation-seeking behavior was biased by the reward asymmetry, we
next compared Model 3 with another model (Model 5), which assumed
value functions that are symmetric with respect to the bead difference
(i.e., value functions that only vary with the absolute value of bead differ-
ence). We found that Model 3 fit information-seeking behavior better
than Model 5, supporting a bias in information seeking (see below,
Results).

The fact that Model 3 performed better than Models 1, 2, and 4 sug-
gests that, although participants did not change their behavioral strat-
egies based on the trial-by-trial reward manipulation, they adapted to
the different reward statistics across blocks. However, such changes
across blocks could potentially reflect time-induced behavioral changes
as well, such as boredom or fatigue, as all participants completed the
baseline block first and the scale block second. To examine the possibil-
ity that the population-level behavioral pattern was not stationary over
time, we tested another model (Model 6), which assumed distinct value
functions between the first and second scanning runs within each block
(one value function for each run, four functions in total). Model 6 per-
formed worse than Model 3 (information-seeking choices: LOPO CV
LL = —1222.05 vs —1214.73, LOTO CV LL = —1145.39 vs —1142.25, bet
choices: LOPO CV = —288.55 vs —283.56, LOTO CV LL = —266.00 vs
—265.26), suggesting that changes in participants’ behavior were system-
atically driven by reward statistics, such as the average reward rate over
trials rather than time.

MRI data acquisition. MRI data were collected using a Siemens
(Erlangen) Trio 3T scanner with a 32-channel head coil at the University
of Pennsylvania. A 3D high-resolution anatomic image was acquired
using a TIl-weighted MPRAGE sequence [voxel size = 0.9375 X
0.9375 x 1 mm, matrix size = 192 x 256, 160 axial slices, inversion time
(TI) = 1100 ms, repetition time (TR) = 1810 ms, echo time (TE) = 3.51
ms, flip angle = 9 degrees]. Functional images were acquired using a
T2*-weighted multiband gradient echoplanar imaging (EPI) sequence
(voxel size = 2 X 2 X 2 mm, matrix size = 98 x 98, 72 axial slices with
no interslice gap, 400 volumes, TR = 1500 ms, TE = 30 ms, flip angle =
45 degrees, multiband factor = 4), followed by field map images (TR =
1270 ms, TE = 5 ms and 7.46 ms, flip angle = 60 degrees).

Statistical analyses—MRI data. MRI data were analyzed using
Functional MRI of the Brain (FMRIB) Software Library (FSL) version
6.0; (Smith et al., 2004; Jenkinson et al., 2012). MPRAGE anatomic
images were skull stripped using FSL BET. EPI functional images were
slice time corrected, motion corrected, high-pass filtered (cutoft = 90 s), geo-
metrically undistorted using field map images, registered to the MPRAGE
anatomic image, normalized to the Montreal Neurological Institute (MNI)
space, and spatially smoothed (Gaussian kernel FWHM = 6 mm).

To look for regions that represent the subjective VOI on the initial
beads presentation, we ran a GLM analysis (GLM 1). The regressor of in-
terest modeled the initial beads presentation (3 s boxcar) and was para-
metrically modulated by the trial-by-trial subjective VOI, which was the
latent function estimated in the winning model (Model 3) of GP logistic
regression on the information-seeking behavior. GLM 1 also included
nuisance regressors that modeled the initial beads presentation
(unmodulated), the extra bead presentation, and button presses. The
regressors were convolved with the canonical double-gamma hemody-
namic response function (HRF). GLM 1 additionally incorporated six
head motion parameters (three translations and three rotations, esti-
mated by MCFLIRT) as confound regressors. GLM 1 was run following
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the standard approach of FSL FEAT, the GLM was first fit to BOLD sig-
nals in each run (first level), and the estimated coefficients of interest
were combined across runs (second level). Individual-level T statistics
were entered into the population-level inference using FSL randomize,
in which clusters that showed positive response to the subjective VOI
were defined at the voxelwise cluster-forming threshold of p < 0.001
and evaluated by sign-flipping permutation on cluster mass controlling
for whole-brain familywise error (FWE).

To illustrate how the cluster’s activation varied as a function of the
bead difference, we ran another GLM (GLM 2) using FSL FEAT, which
included a regressor for each level of bead difference separately, along
with the same nuisance regressors as GLM 1. Then T statistics for each
regressor of interest were averaged across runs within each block and
then averaged across all voxels in the right DLPFC cluster defined as
above.

To examine how the DLPFC responds to the updating of the VOI,
we ran another GLM (GLM 3) using FSL FEAT to estimate the time
course of signals related to the initial VOI and the VOI updating, which
were derived from Model 3 of GP logistic regression. The VOI updating
was calculated as the signed difference between the posterior VOI, which
depends both on the initial beads and the extra bead, and the prior VOI,
which depends only on the initial beads. GLM 3 included three sets of
the finite impulse response (FIR) function, one unmodulated (intercept),
one parametrically modulated by the initial VOI, and one parametrically
modulated by the VOI updating. These FIRs were aligned to the onset of
the extra bead and sampled every 1.5 s (equal to TR) for the total dura-
tion of 21 s. GLM 3 also included nuisance regressors that modeled the
initial beads presentation and button presses, convolved with the canoni-
cal HRF, along with head motion parameters. T statistics of parametri-
cally modulated FIR sets were averaged across all voxels in the right
DLPFC cluster for each participant. Population-level inference on the
updating signal was conducted at the cluster level across time; clusters
were defined at the eventwise cluster-forming threshold of p < 0.05 and
evaluated by sign-flipping permutation on cluster mass, correcting for
FWE across time.

Finally, we tested whether different regions represent the VOI as the
actual information-seeking choice approaches. To do so, we ran addi-
tional whole-brain analyses using four GLMs (4-7). GLMs 4 and 5 mod-
eled parametric effects of either the VOI based on the initially presented
beads alone (GLM 4) or the updated VOI, which also took into account
the extra bead (GLM 5) on the extra bead presentation (1 s boxcar).
Similarly, GLMs 6 and 7 modeled parametric effects of the initial (GLM
6) or updated (GLM 7) VOI on the onset of the information-seeking
screen (stick function). These GLMs included the same nuisance regres-
sors and were subject to the same statistical inference procedure as GLM
1. For clusters identified in GLM 4 (the initial VOI on the extra bead),
we tested for the VOI updating using GLM 3. For clusters identified in
GLM 6 (the initial VOI on the information-seeking screen), we tested
for updating by running another GLM (GLM 8). GLM 8 was constructed
similarly to GLM 3, except that the FIRs in GLM 8 were aligned to 6 s
before the information-seeking screen onset and covered the duration of
27 s. In both analyses, statistical significance of the updating signals was
evaluated at the cluster level, as described in the previous paragraph.

Data Availability. Behavioral data and custom code for behavioral
analysis are available at https://gitlab.com/kenji.k/beadsVOI/, raw MRI
data are available at https://openneuro.org/datasets/ds003758/, and
unthresholded population-level statistics images are available at https://
neurovault.org/collections/ MORTKKAMY/.

Results

Experimental paradigm

To examine neural representations of the VOI and its updating,
we adopted a variant of the beads task, an experimental para-
digm widely used to study probability judgment and information
seeking (Phillips and Edwards, 1966; Huq et al., 1988; Furl and
Averbeck, 2011). As in the conventional version of the beads
task, participants were presented with a jar containing two
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types of beads, one marked with a face and the other
marked with a house, and were asked to make a bet on the
bead composition of the jar by observing some of the beads
drawn from the jar. There were two possible compositions
of the jar: one that consists of 60% face beads and 40%
house beads, and the other that consists of 40% face beads
and 60% house beads (Fig. 1A).

Our variant of the beads task had three key features. First,
we introduced reward asymmetry; participants could earn
more rewards by correctly betting on one jar type (e.g., the
face-majority jar) than the other (e.g., the house-majority
jar; Fig. 1B). If participants were motivated to seek informa-
tion to maximize rewards in the bet, their information-seek-
ing strategy should be sensitive not only to the current
evidence (the number of observed beads so far) but also to
the reward asymmetry (the jar type they should bet on to
maximize rewards). On the other hand, if participants were
motivated to accurately guess the jar type, their information
seeking should not be sensitive to the reward asymmetry.
Therefore, the reward asymmetry allowed us to test whether
information seeking was driven by the instrumentality of in-
formation for future reward seeking as normatively pre-
scribed in economic theories.

Second, we provided initial evidence in the form of 20 or 30
bead draws from the jar. On a subset of trials, participants could
then seek more information about the jar composition by draw-
ing additional beads or elect to make a bet on the jar type (Fig.
1C). The difference in the numbers of face beads and house
beads was parametrically manipulated to range from strong evi-
dence favoring the low-reward jar to strong evidence favoring
the high-reward jar. Additional draws incurred a small constant
cost (0.1 point per draw) to monetarily incentivize participants
to seek information only when necessary. This design allowed us
to empirically measure the subjective VOI, or how much partici-
pants were willing to seek costly information, as a function of the
current evidence.

Third, on the trials that allowed for information seeking, par-
ticipants were presented with one extra bead draw from the jar
before the information-seeking phase (Fig. 1C). The extra bead
complemented the initial beads, shifting the evidence on the jar
compositions, and thus updated the VOI originally evaluated
based on the initial beads. We analyzed neural responses on this
extra bead event to examine how the neural representation of the
VOI is dynamically updated based on the up-to-date evidence
over time.

Participants completed the task inside the scanner. In each
trial, after the presentation of initial beads and an extra bead, par-
ticipants were allowed to draw as many additional beads as they
wanted within 5 s and then made a binary bet on the jar type.
Additionally, to empirically elucidate participants’ reward-seek-
ing behavior in a way that is not contaminated by information
seeking, participants were asked to make a bet on the jar type
without information seeking in a subset of trials (bet-only
trials). Finally, to explore how information seeking is sensi-
tive to rewards, we introduced trialwise manipulation of the
reward structures. Specifically, participants earned a baseline
reward of 100 points, regardless of their bet, in half of the tri-
als in one block (henceforth the baseline block), and they
earned a tenth of the rewards in half of the trials in the other
block (henceforth the scale block). Importantly, the reward
of a correct bet was asymmetric across all trials and blocks
(Fig. 1B).
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Theory

We first derived a theoretical prediction on how agents should
seek information to optimize their bet and maximize rewards.
We obtained a theoretical VOI under the assumption that the
agents aim to maximize the expected value (EV) of the upcoming
bet, which they evaluate based on the posterior probability of the
jar type inferred in a perfectly Bayesian manner.

The posterior of the jar type is determined by the numbers of
high-reward beads (the majority bead in the high-reward jar, e.
g., face) and low-reward beads (the majority bead in the low-
reward jar, e.g., house) observed from the jar so far (Fig. 24).
The more high-reward beads that have been drawn, the more
likely the jar is the high-reward jar, and vice versa. More specifi-
cally, the posterior is determined by the difference in the num-
bers of observed beads (high-reward beads minus low-reward
beads; Fig. 2B; Eq. 4). When more high-reward beads have been
observed than low-reward beads (bead difference > 0), the prob-
ability of the high-reward jar is higher than the probability of the
low-reward jar, and it increases with the bead difference.
Conversely, when more low-reward beads have been observed
(bead difference < 0), evidence favors the low-reward jar.

To evaluate the EV of a bet, the agent needs to combine the
posterior on the jar type with the reward structure (Fig. 2C).
Because of the reward asymmetry, when the current evidence
does not favor either jar (the bead difference = 0; Fig. 2C, diago-
nal), the EV to bet on the high-reward jar is higher than the EV
to bet on the low-reward jar. The EVs to bet on the two jars are
closest to each other when more low-reward beads have been
observed (bead difference = —5; Fig. 2C, white region). This pre-
diction holds across all our reward structures (Fig. 2D); a base-
line shift in rewards does not affect the EV difference, and a scale
manipulation in rewards multiplicatively affects both EVs with-
out changing the relative magnitudes of the EVs. Therefore, if
forced to bet on one of the two possible jars, the EV-maximizing
agent would experience the highest choice uncertainty not when
equal numbers of beads have been observed but when more low-
reward beads have been observed than high-reward beads.

Under economic theories, the VOI, or the value of drawing
an additional bead, is evaluated based on how much the next
bead would improve the upcoming bet on average (Eq. 5).
Qualitatively, the theoretical VOI tends to increase with the
uncertainty about which jar type to bet on because an additional
bead would provide more evidence for either jar type and resolve
the uncertainty over possible actions (Fig. 2E). For instance,
when the agent is under high uncertainty on the bet (bead differ-
ence = —5; Fig. 2E, black region), an additional bead would help
the agent make a bet regardless of its type; if the next bead is a
high-reward bead, it provides additional evidence in favor of the
high-reward jar, whereas if it is a low-reward bead, it favors the
low-reward jar. The agent can thus improve the EV by making a
bet conditional on the next bead type. On the other hand, when
the agent has observed more high-reward beads than low-reward
beads (e.g., bead difference = +10), or when the agent has
observed many more low-reward than high-reward beads (e.g.,
bead difference = —10), an additional bead would not affect the
subsequent bet; the agent would bet on the high-reward jar or
low-reward jar no matter what the next bead would be.
Therefore, the theoretical VOI takes an inverted U shape as a
function of the bead difference, with its peak at a negative bead
difference (—5; Fig. 2F).

Therefore, our theoretical framework yields an important
prediction that the information-seeking strategy should be biased
by the reward asymmetry; participants should draw additional
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Theoretical predictions. A, The probability of the jar type (specifically, the probability that the true jar is the high-reward jar) increases with the number of observed high-reward

beads and decreases with the number of observed low-reward beads. B, The probability of the jar type is determined by the bead difference. C, Because of the reward asymmetry, when equal
numbers of high-reward and low-reward beads have been observed (the diagonal), the EV to bet on the high-reward jar is higher than the low-reward jar. The agent would experience the
smallest EV difference and, hence the highest uncertainty on the bet, when more low-reward beads have been drawn (the white region). D, The EV difference is smallest when the bead differ-
ence is —5 across all reward structures. Top, Bet EVs are not affected by a baseline shift in rewards. Bottom, The relative magnitudes of EVs remain the same when rewards are scaled down
overall. E, The theoretical VOI is evaluated based on how much an additional bead would help the upcoming bet and increase the EV. It is highest when the uncertainty on the bet is highest
(bead difference = —5, the black region) because the next bead would affect the bet regardless of the type of the bead; an additional high-reward bead would provide evidence in favor of
betting on the high-reward jar, and an additional low-reward bead would provide evidence in favor of betting on the low-reward jar. F, The theoretical VOI is highest at a negative bead differ-
ence across all reward structures. Top, The VOI is unaffected by a baseline shift in rewards. Bottom, When the rewards are scaled down, the magnitude of the VOI becomes smaller as well, but

the peak location remains the same.

beads more frequently when more low-reward beads have been
observed than high-reward beads (bead difference < 0). The pre-
dicted bias holds across reward structures (Fig. 2F); manipula-
tion of the reward baseline (in the baseline block) does not affect
the VOI, and manipulation of the reward scaling (in the scale
block) affects the overall magnitude of the VOI but does not
drastically alter its inverted U shape. This prediction might be
somewhat counterintuitive, as the motivation for information
seeking is expected to be higher when the current evidence favors
the less desirable state (the low-reward jar). However, it is con-
sistent with the widespread notion of confirmation bias that an
agent needs less evidence to bet on a desirable state than an
undesirable state (Gesiarz et al., 2019). More generally, the pre-
diction echoes the general assumption that information seeking
should be driven not by the motivation to predict the state
(Which jar is the true jar?) but to maximize rewards (Which jar
to bet on?). If, in contrast to our theoretical assumption, an agent
is solely motivated to accurately predict the state, the agent
would seek information the most when the bead difference is
zero. Therefore, a bias in information seeking would suggest that
participants seek information based on the instrumentality of the
information for future reward seeking as normatively prescribed.
To our knowledge, this bias in information seeking under the

reward asymmetry is a novel theoretical prediction, which has
not yet been directly tested.

Behavior
We examined participants’ information-seeking behavior, and in
particular, whether it was biased by the reward asymmetry as
predicted. If participants sought to improve their subsequent bet
choice and maximize rewards, the frequency of information
seeking (i.e., how often they drew at least one bead) should be bi-
ased toward a negative bead difference (i.e., when more low-
reward beads have been drawn than high-reward beads).
Observed information-seeking behavior was biased in the
predicted direction (Fig. 3A). In both baseline and scale blocks,
the frequency of drawing an additional bead was highest when
more low-reward beads had been drawn than high-reward beads.
Sensitivity to the reward asymmetry was also confirmed by the
bet on the jar type in the bet-only trials (Fig. 3B). The frequency
of betting on the high-reward jar increased with the bead differ-
ence, and the indifference point (the point at which participants
were equally likely to bet on either jar) was shifted toward a neg-
ative bead difference. These results show that participants incor-
porated both the current evidence and reward asymmetry in
reward-seeking and information-seeking choices.



Kobayashi et al.  Dynamic Representation of Value of Information

»[ """"""""""" (a

Initial beads &

One extra bead  Info-seeking

A ‘/B\‘

Baseline block

0.5 0.5

J. Neurosci., September 29, 2021 - 41(39):8220-8232 - 8227

participants because we also manipulated
the bead difference and the trial type (info-
ration-seeking or bet-only). Despite this li-
mitation, we observed that participants’
information seeking exhibited a clear bias
in both blocks. Indeed, we observed that
Model 3, which allowed asymmetry in in-
formation seeking, performed better than
another model (Model 5), which assumed
symmetric information seeking (baseline
block LOPO CV LL = —666.82 vs —679.52;
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LOTO CV LL = —630.87 vs —645.10; scale
block LOPO CV LL = —547.92 vs —548.13;
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Furthermore, analysis on betting choices
also preferred Model 3 to Models 1 and 2
(comparison between Models 3 and 4 is
equivocal;, LOPO CV LL = -287.01,
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Figure 3.

tions within blocks. Error bars indicate SEM based on bootstrap resampling participants.

A notable deviation from the theoretical prediction is that
participants’ information seeking was not sensitive to the reward
scale manipulation. In our framework, the theoretical VOI is
smaller when the rewards are scaled down (although the peak
location remains the same), but it is unaffected by a reward
baseline shift (Fig. 2F). Thus, if our participants were per-
fectly sensitive to the reward structure on a trial-by-trial ba-
sis, their information seeking should be affected by trialwise
reward manipulation in the scale block but not in the base-
line block. To test this, we examined how information-seek-
ing behavior differed across reward conditions and blocks.
To characterize the relationship between information seek-
ing and the bead difference without assuming a functional
form, we used GP logistic regression (Rasmussen and
Williams, 2006). We fit four models to participants’ behav-
ior; Model 1 assumed sensitivity to the scale manipulation
but not to the baseline manipulation as normatively pre-
scribed, Model 2 assumed sensitivity to both manipulations,
Model 3 assumed a difference between blocks but no sensi-
tivity to the manipulation in either block, and Model 4
assumed no difference between blocks or reward conditions.
We found that Model 3 outperformed other models, includ-
ing Model 1, according to both leave-one-participant-out
cross-validation (LOPO CV; LL = —1216.93, —1216.15,
—1214.73, and —1232.15) and leave-one-trial-out cross-vali-
dation (LOTO CV; LL = —1143.61, —1143.76, —1142.25, and
—1166.17). Therefore, although participants did not change their
information-seeking strategy based on the reward structure on a
trial-by-trial basis, their behavior was systematically different
between blocks, likely because of differences in reward statistics
between blocks (e.g., the average reward rate over trials).

We speculate that shifting information-seeking strategies
on a trial-by-trial basis was too cognitively taxing for our

Bead difference
high-reward - low-reward

Behavior. Participants’ information-seeking and reward-seeking behavior was biased by the reward asym-
metry as predicted. A, Participants’ information seeking, or the frequency at which they drew at least one bead,
peaked when more low-reward beads had been drawn than high-reward beads. B, In the bet-only trials, the fre-
quency with which they bet on the high-reward jar increased with the difference in the beads and was biased by the
reward asymmetry. Lines indicate the best-fit model, which assumed sensitivity to blocks but not to reward manipula-

—285.67, —283.56, and —281.19; LOTO CV
LL = —267.77, —266.25, —265.26, and
—268.46), showing that participants were
insensitive to trialwise reward manipula-
tion not only in information seeking but
also in reward seeking. These results are
qualitatively consistent with our theoretical
prediction and lend support to the general
notion that people seek information to
improve their subsequent choices and max-
imize rewards.

6 12

Neural representation of VOI in the DLPFC on initial
decision evidence

Next, we examined how the VOI was represented in the brain.
Although previous fMRI studies reported VOI representations in
a set of regions including the DLPFC, ventromedial prefrontal
cortex, and striatum, most of these studies focused on situations
where participants obtained information that would not be use-
ful for future decisions (ie., information seeking for its own
sake), and one study that examined instrumentality-driven infor-
mation seeking used a one-shot paradigm that did not involve
any updating (Kobayashi and Hsu, 2019). Thus, it remains
unknown to what extent the neural representation of VOI is gen-
eralizable across tasks and decision contexts, and whether previ-
ously reported regions also represent and update the VOI in our
experimental paradigm.

To look for brain regions that represent the VOI, we empiri-
cally estimated subjective VOI from the information-seeking
behavior. We used the winning model of our GP logistic regres-
sion analysis (Model 3) to obtain the latent value function, which
varied smoothly with the bead difference and differed between
blocks (Fig. 4A). We then looked for regions where neural
responses at the presentation of initial beads covaried with the
subjective VOL.

We found a cluster in the right DLPFC representing subjec-
tive VOI (Fig. 4B; cluster-forming threshold p < 0.001, cluster
mass p < 0.05, whole-brain FWE corrected; Table 1). Activation
in this cluster peaked when more low-reward beads had been
drawn in both blocks, consistent with the prediction (Fig. 4C).
Interestingly, the DLPFC cluster overlaps with a VOI cluster
reported in a previous study, which examined one-shot instru-
mentality-driven information seeking (Kobayashi and Hsu,
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2019), providing converging evidence that the right
DLPFC represents the VOI across decision contexts,
at least when information is primarily acquired based
on its instrumentality for future value-guided
decisions.

Updating of VOI representation in the DLPFC on
additional decision evidence

We then examined how the VOI representation was
updated on the arrival of additional evidence. When
the evidence available to agents changes, they need to
track the up-to-date VOI to seek information adap-
tively over time. Specifically, we examined how the
right DLPFC responds to the extra bead presented
after the initial beads but before the information-
seeking choice (Fig. 5A). We derived the VOI
updating, or the difference between the posterior
and prior VOI, as a function of the initial bead
difference (the prior evidence) and the type of the
extra bead (the evidence that causes updating).
For instance, if participants have observed many
more low-reward beads than high-reward beads
(bead difference < —5), an extra high-reward
bead would positively update the VOI as it slightly increases
the uncertainty on the bet, whereas an extra low-reward
bead would negatively update the VOI as it further
decreases the uncertainty on the bet. The directionality of
updating is the opposite when more high-reward beads
have been observed (bead difference > 0).

We hypothesized that the right DLPFC tracks the up-to-
date VOI over time, and it responds not only to the VOI
based on the initial beads but is dynamically updated to the
appropriate updated VOI after observation of the extra
bead. To test this, we estimated the effects of the initial VOI
and VOI updating on BOLD signals from the region of in-
terest (ROI) defined above (Fig. 4B). To avoid a strong
assumption about the time course of the updating process,
we estimated the effects of initial VOI and VOI updating
across time using FIR functions aligned to the presentation
of the extra bead (Fig. 5, top). We included three FIRs in a
GLM, one parametrically modulated with the initial VOI,
one modulated with the VOI updating, and one without
parametric modulation (intercept). Because the ROI was
originally defined based on its response to the initial VOI
(albeit in an earlier time window), the estimated effect of
the initial VOI is biased, but the estimated effect of the VOI
updating depends critically on the exact bead that was
drawn and thus is independent of our ROI selection process
(Fig. 5A).

The estimated time courses are shown in Figure 5B. As
expected, the right DLPFC represents the initial VOI early
on. Importantly, the right DLFPC also positively responded
to the VOI updating (cluster-forming threshold p < 0.05,
cluster mass p < 0.05, FWE corrected across time). The rise
of the VOI updating signal lags behind the initial VOI sig-
nal in time but the signals go back to baseline in parallel.
The estimated time courses look somewhat sluggish, which
presumably reflects the temporal nature of our experimen-
tal paradigm. After the extra bead, the participants were
presented with another screen that incorporated both the
initial beads and the extra bead, and they could start making
the information-seeking choices only after a jittered delay.
Therefore, the VOI representation did not have to be

-

T value
o

Subjective VOI [a.u] B>
|

Figure 4.

D e P >[geejg00
—>[ j_)[zf\\@}_) )

Initial beads

Kobayashi et al. @ Dynamic Representation of Value of Information

Bet
choice

One extrabead  Info-seeking

choice

C

— Baseline block
— Scale block

1
o

12 -6 0 6 12

Bead difference
high-reward — low-reward

-6 0 6 12

Bead difference
high-reward — low-reward

Neural representation of the VOI. 4, The subjective VOI was estimated for each block based on
information-seeking behavior (Fig. 34). B, The right DLPFC represented the subjective VOI (cluster mass
p < 0.05, whole-brain FWE corrected). C, As predicted, the right DLPFC activation peaks at a negative
bead difference in both blocks. Error bars indicate SEM.

immediately updated to drive information seeking adap-
tively; indeed, a separate whole-brain analysis that used the
canonical double-gamma HRF did not reveal any signifi-
cant clusters for VOI updating.

This evidence demonstrates that neural representations in the
right DLPFC shift from the initial (a priori) VOI to the updated
(a posteriori) VOI, suggesting that this brain region dynamically
tracks the VOI based on the up-to-date evidence in service of
adaptive information seeking over time.

Widespread neural representations of the VOI closer to
information seeking

Finally, we examined how the VOI was represented in the
brain later in the trials. Although we identified the VOI
cluster in the right DLPFC on the initial beads presentation,
it is possible that other regions would represent the VOI
as the participants started preparing for actual information-
seeking choices. We conducted additional whole-brain
analyses related to two events, (1) the presentation of the
extra bead and (2) onset of the information-seeking screen,
and looked for brain regions that represented either the ini-
tial VOI (only based on the initially presented beads) or the
updated VOI (based both on the initial and extra beads).

These analyses revealed widespread cortical representations
of the VOI above and beyond the right DLPFC (Fig. 6A,B; Table
1). The set of regions identified in these analyses was largely con-
sistent regardless of the regressor (initial vs updated VOI) and
the timing (extra bead vs information-seeking screen). Most
notably, a cluster was found in the dorsomedial prefrontal cortex
(DMPEG; largely in the superior frontal gyrus), consistent with
previous reports on the representation of the VOI in this region
(White et al., 2019; Kaanders et al., 2020).

We tested whether these regions show evidence of the VOI
updating by conducting the same FIR modeling described above.
To maintain the independence of the updating analysis from the
ROI definition, we focused on the regions identified by the initial
VOI (Fig. 6C,D). Although the only region that exhibited statisti-
cally significant updating (p < 0.05) was the right DLPFC, all
regions exhibited numerically positive updating signals that are
temporally consistent with each other (starting ~9 s from the
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Table 1. Clusters with significant VOI signals
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Region Voxels Cluster-level p Peak T statistics Peak MNI coordinate
Initial VOI at initial bead presentation
Right dorsolateral prefrontal cortex (middle frontal gyrus) 137 0.0395 4.96 48, 40, 24
Initial VOI at extra bead presentation
Right dorsolateral prefrontal cortex 504 0.00585 5.50 56, 14, 36
4.94 46, 44, 28
Right inferior parietal lobule (supramarginal gyrus) 484 0.00669 5.26 54, —38, 56
Dorsomedial prefrontal cortex (superior frontal gyrus, paracingulate gyrus) 476 0.00669 5.01 4,28, 40
Right anterior insula 278 0.00690 5.59 32,22, —6
Right superior frontal gyrus 231 0.0136 5.12 16, 18, 66
Updated VOI at extra bead presentation
Dorsomedial prefrontal cortex 400 0.0111 4.86 2, 20, 56
Right inferior parietal lobule 318 0.0148 479 54, —38, 56
Right anterior insula 252 0.0171 5.59 38,20, —8
Right superior frontal gyrus 233 0.0188 5.27 16, 18, 66
Initial VOI at information-seeking screen
Right dorsolateral prefrontal cortex 1520 0.000627 6.38 48,38, 22
5.32 44, 4,38
Right inferior parietal lobule 893 0.00313 6.38 54, —38, 56
Dorsomedial prefrontal cortex 476 0.00899 5.18 2,28, 46
Right central orbitofrontal cortex 260 0.0192 5.94 24,54, —10
Right lateral occipital cortex 256 0.0219 522 24, —66, 50
Right anterior insula 245 0.0219 5.50 32,26,0
Updated VOI at information-seeking screen
Right inferior parietal lobule 643 0.00522 573 54, —40, 56
Right dorsolateral prefrontal cortex 637 0.00564 5.61 48,38, 22
5.34 44, 28, 42
Right premotor cortex (precentral gyrus) 425 0.0117 5.15 44, 4,34
Dorsomedial prefrontal cortex 404 0.0121 499 0,20, 52
Right anterior insula 223 0.0242 5.31 32, 26,0
Right central orbitofrontal cortex 209 0.0247 5.50 24,54, —10
Right lateral occipital cortex 178 0.0322 4.98 24, —66, 50

Shown are clusters that were formed at voxelwise p << 0.001 and survived cluster mass p << 0.05, whole-brain FWE corrected.

extra bead onset or 10.5 s from the information-seeking screen
onset), and statistical trends (p < 0.10) were observed in the
right supramarginal gyrus, right central orbitofrontal cortex,
and right lateral occipital cortex. These suggest that, although the
right DLPFC starts to represent the VOI earliest and dynamically
tracks the VOI over time, the resultant up-to-date VOI signals
are also represented in a network of regions, perhaps to support
cognitive or motor processes related to actual information-seek-
ing choices.

Discussion

To make better decisions, we need to seek information adaptively
based on what we already know (up-to-date decision evidence)
and what is at stake (reward structure). When our knowledge is
updated, we need to update the VOI accordingly to decide
whether to seek further information. In this study, we used a var-
iant of the beads task to examine how information seeking is
shaped by current evidence and asymmetric reward structure
and how the VOI is represented and updated in the brain.

We theoretically derived, and empirically verified, the norma-
tive prediction that information seeking should be biased by
reward asymmetry. To maximize rewards in the upcoming deci-
sion, participants sought information more frequently when
the current evidence preferred the less rewarding state. This
finding is related to, but distinct from, the widespread ob-
servation of confirmation biases. Confirmation biases are
commonly framed as biases in updating processes and/or
decision criteria because of reward asymmetry or other

factors such as precommitment (Luu and Stocker, 2018;
Talluri et al., 2018; Gesiarz et al., 2019; Leong et al., 2019).
We showed that even without such confirmation biases, in-
formation-seeking behavior is biased because of reward
asymmetry, which is normative from the perspective of
reward maximization. Our findings thus raise an important
question regarding the extent to which phenomena attrib-
uted to confirmation biases could be accounted for by in-
strumentality-driven information seeking. Furthermore,
although the current study used monetary rewards, our the-
oretical framework can be generalized based on the notion
that people assign intrinsic values to beliefs they can hold
(Kunda, 1990; Sharot and Garrett, 2016); if people are
incentivized to hold certain beliefs, their information seek-
ing would be biased depending on the extent to which the
current evidence supports the desirable belief. It is worth
noting, however, that the current study only examined
reward structures where a correct bet yields asymmetric
rewards but an incorrect bet does not. Our theoretical
framework needs to be expanded to different reward struc-
tures to achieve a more comprehensive understanding of in-
formation-seeking biases across domains.

Our theoretical framework derived a quantitative prediction
on how the VOI is sensitive to decision evidence and asymmetric
reward structure (Fig. 2E,F). Although our participants’ actual
information-seeking behavior (Fig. 3A) did not precisely match
the theoretical VOI, it is important to note that the prediction
was derived under specific assumptions about decision processes,
such as risk neutrality and perfectly Bayesian probability



8230 - J. Neurosci., September 29, 2021 - 41(39):8220-8232

estimation. In reality, our participants exhib-
ited risk aversion in the betting choices (Fig.
3B), and their internal probability estimation
could have deviated from the Bayesian pre-
dictions (e.g., as assumed in the prospect
theory). Relaxing these assumptions quanti-
tatively affects the shape of the VOI function
(e.g., risk aversion would make the peak
closer to the bead difference of zero, consist-
ent with the observed information-seeking
behavior in Fig. 3A4), and the current study is
not ideally designed to precisely characterize
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these decision processes. Nonetheless, the 12
most important prediction of our theoretical

framework is the existence of biases in infor-

mation seeking as this prediction holds even B
when some assumptions are relaxed (e.g.,
nonlinear utility or probability weighting
functions). To further test the validity of the
VOI theory, future studies need to empiri-
cally characterize how information-seeking
choices are related to individual differences
in decision preferences. This approach is
also a critical step toward characterizing the
extent to which information seeking is
driven by noninstrumental, psychological
motives along with an instrumental benefit
(Hunt et al, 2016; Kobayashi and Hsu,
2019).

Our finding that the VOI is represented
in the DLPFC is consistent with a previous
fMRI study on instrumentality-driven infor-
mation seeking (Kobayashi and Hsu, 2019),
despite a few key differences in task design.
For instance, our paradigm required proba-
bilistic inference on the hidden jar composi-
tion based on observable evidence, whereas Kobayashi and Hsu
(2019) provided explicit visual presentation of outcome probabil-
ity. Furthermore, our paradigm manipulated decision evidence
available to the participant on each trial and examined its effect
on information-seeking behavior and underlying neural signals.
Thus, the current study not only replicates but also critically
extends the previous finding by showing that the DLPFC is sensi-
tive to the current evidence and biased by reward asymmetry.
Along with neuroimaging evidence that the DLPFC is also acti-
vated on information seeking driven by factors other than instru-
mentality (Kang et al., 2009; Jepma et al., 2012; Gruber et al,,
2014), these results suggest that the DLPFC is critical for adaptive
information seeking across decision contexts.

Our theoretical and empirical results indicate that the VOI is
tightly coupled with choice difficulty, or the difficulty of deciding
which jar to bet on to maximize rewards, in the current para-
digm. Although the close relationship between these two varia-
bles may be observed across a wide range of real-world
information seeking, it raises the possibility that the right
DLPEC cluster that we identified tracks choice difficulty as
opposed to the VOI. We think this is unlikely for two reasons.
First, we observed the VOI signals in the DLPFC on the initial
evidence presentation, which is temporally distant from actual
betting choices (in the majority of the trials, the participants
observed an extra bead and then had the opportunity to draw
even more beads before making a bet). Second, previous work
has shown that the VOI signals in the right DLPFC could not be

Figure 5.
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Updating of the VOI representation. The right DLPFC tracks VOI as it is updated by an extra bead, presented
after the initial beads but before information seeking. A, The VOI update was calculated as the signed difference
between the VOI after the extra bead and the VOI before the extra bead. B, Time courses of the initial VOI signal (gray)
and the VOI updating signal (purple) in the right DLPFC. The right DLPFC responds not only to the initial VOI but also to
the updating of the VOI (temporal cluster mass p << 0.05, FWE corrected). Because the region of interest was defined
based on the initial VOI signal, estimation of the initial VOI signal is biased, but estimation of the updating signal is
unbiased. Error bars indicate SEM.

entirely accounted for by choice difficulty alone (Kobayashi and
Hsu, 2019). This previous study manipulated the diagnosticity of
information (i.e., to what extent the information would affect
outcome probability) independently from the choice difficulty
and observed that the diagnosticity systematically affected infor-
mation-seeking behavior and the underlying VOI signals in the
right DLPFC. Nonetheless, this previous study differed from our
current design in several ways as discussed above, and future
studies need to experimentally decouple the VOI from choice
difficulty in belief-updating tasks such as ours.

Importantly, we showed that the DLPFC not only represents
the VOI based on the initial evidence but also updates it when
additional evidence is supplied. In other words, the DLPFC
tracks the up-to-date VOI based on the most recent evidence.
Such DLPFC signals may be critical for adaptive information
seeking in situations where people accumulate decision evidence
over time, either because information is gradually supplied from
the environment or because people sequentially acquire multiple
pieces of information. The DLPFC may be well suited for sus-
tained and dynamically updated representation of the VOI as
DLPFC neurons are known to exhibit sustained activity for
working memory retention (Fuster and Alexander, 1971;
Funahashi et al., 1989; Sreenivasan and D’Esposito, 2019).

In addition to the DLPFC, we observed that the VOI was also
represented in several additional regions later in the trial, closer
to the time of the decision whether to seek information or not.
Among these regions, the most notable is the DMPFC, which
past studies have also suggested is involved in information
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The VOI is widely represented in time epochs closer to the information-seeking choices. 4, B, A number of regions were identified by parametric effects of the initial VOI (red, eval-

uated based on the initially presented beads only) or the updated VOI (blue, incorporating both the initial and extra beads) on the extra bead presentation (A) or information-seeking screen
(B; cluster mass p << 0.05, whole-brain FWE corrected). C, D, Time courses of the initial VOI signal (gray) and the VOI updating signal (purple) in the regions identified by the initial VOI signals
in A and B, respectively. Although the clearest evidence of updating was observed in the right DLPFC, there were statistical trends in a few other regions (temporal cluster mass p << 0.10,
FWE corrected). Error bars indicate SEM. IPL, Inferior parietal lobule; SFG, superior frontal gyrus; Al, anterior insula; OFC, orbitofrontal cortex; LOC, lateral occipital cortex.

seeking (White et al., 2019; Kaanders et al., 2020). One interpre-
tation is that, while the DLPFC starts representing the VOI as
early as some decision evidence is presented and keeps track of it
over time, the VOI is also represented in other regions to support
information-seeking decisions in an on-demand manner. In line
with this interpretation, our analysis provided some evidence,
although not statistically significant, that the regions outside the
DLPFC represent the updated, most recent VOI (as opposed to
the initial VOI), possibly by reading out dynamic representations
in the DLPFC. Future studies should examine this possibility fur-
ther, for instance by testing for causal relationships between
computations in the DLPFC and other regions. Another inter-
pretation, however, is that some of these regions do not represent
the VOI but represent choice difficulty; in particular, the
DMPEFC could be involved in evaluating the uncertainty or con-
flict in which action to take (Rudebeck et al., 2008; Rushworth
and Behrens, 2008; Kennerley et al., 2011; Shenhav et al., 2016).
One reason that we did not observe the VOI signals in the

DMPEFC on the initial beads presentation could be that action
uncertainty (regarding which jar to bet on) is evaluated later in
time. This possibility could be tested by experimentally decoupling
choice difficulty from the VOI as discussed above. Finally, it is
worth noting that our current study included a modest sample
size (n = 15) and thus may have lacked statistical power to detect
signals related to the VOI reliably across time in regions outside
the DLPFC.

Our results may have important implications for informa-
tion-seeking deficits in clinical populations. For instance, schizo-
phrenia has been associated with the tendency to make
premature decisions without enough information seeking (Ross
et al., 2015; Dudley et al., 2016; but see Baker et al., 2019), which
could be accompanied by DLPFC hypoactivity (Barch and
Ceaser, 2012) and/or lack of sensitivity in the DLPFC to decision
evidence and reward asymmetry. Similarly, individuals with
obsessive-compulsive disorder exhibit excessive information
seeking (Hauser et al, 2017), which could be caused by
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hyperactivity in the DLPFC (Eng et al., 2015) and/or lack of VOI
updating in the DLPFC. Our experimental and theoretical frame-
work provides a novel approach to characterize instrumentality-
driven information seeking, which can be readily applied in
future research with clinical populations.
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