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Across many studies, ventromedial prefrontal cortex (vmPFC) activity has been found to correlate with subjective 

value during value-based decision-making. Recently, however, vmPFC has also been shown to reflect a hexago- 

nal gridlike code during navigation through physical and conceptual space, and such gridlike codes have been 

proposed to enable value-based choices between novel options. Here, we first show that, in theory, a hexagonal 

gridlike code can in some cases mimic vmPFC activity previously attributed to subjective value, raising the possi- 

bility that the subjective value correlates previously observed in vmPFC may have actually been a misconstrued 

gridlike signal. We then compare the two accounts empirically, using fMRI data from a large number of subjects 

performing an intertemporal choice task. We find clear and unambiguous evidence that subjective value is a 

better description of vmPFC activity in this task than a hexagonal gridlike code. In fact, we find no significant 

evidence at all for a hexagonal gridlike code in vmPFC activity during intertemporal choice. This result limits the 

generality of gridlike modulation as description of vmPFC activity. We suggest that vmPFC may flexibly switch 

representational schemes so as to encode the most relevant information for the current task. 
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Many studies in decision neuroscience have identified a critical role

or the ventromedial prefrontal cortex (vmPFC) in decision-making.

pecifically, neural activity in the vmPFC correlates with the subjec-

ive value of expected or experienced outcomes across a wide variety of

ecision-making tasks ( Bartra et al., 2013 ; Clithero and Rangel, 2013 ;

evy and Glimcher, 2012 ). Neural correlates of subjective value have

een found in vmPFC using both fMRI in humans as well as single cell

ecording in non-human animals ( Howard et al., 2015 ; Kable and Glim-

her, 2007 ; McNamee et al., 2013 ; Strait et al., 2014 ; Yamada et al.,

018 ). One straightforward interpretation of these results is that vmPFC

ncodes the subjective value of potential outcomes, which is then used

o make choices between outcomes ( Kable and Glimcher, 2009 ). 

However, recent human neuroimaging studies have found that a sim-

lar area of vmPFC also serves a different function: encoding represen-

ational maps that enable navigation through physical and conceptual

paces ( Constantinescu et al., 2016 ; Doeller et al., 2010 ; Jacobs et al.,

013 ). Both intracortical recordings and fMRI studies of humans nav-

gating through virtual arenas have shown that activity in vmPFC is

odulated in a hexagonal manner by the direction of travel, which is a

attern characteristic of grid cells ( Bao et al., 2019 ; Doeller et al., 2010 ;

acobs et al., 2013 ; Nau et al., 2018 ). Grid cells were first discovered
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n entorhinal cortex (ERC) during spatial navigation and provide an ef-

cient representation of two-dimensional space ( Behrens et al., 2018 ;

oeller et al., 2010 ; Hafting et al., 2005 ; Whittington et al., 2020 ).

ore recently, fMRI signatures of this hexagonal gridlike code have

een observed in vmPFC during navigation in a purely conceptual space

 Constantinescu et al., 2016 ). Specifically, stimuli in that study were

efined along two dimensions, and when subjects imagined a stimulus

ransforming through the conceptual space defined by those two dimen-

ions, activity in vmPFC showed a similar response pattern as that ob-

erved during two-dimensional spatial navigation. 

These recent results have led some to argue that these hexagonal

ridlike codes could serve a general role in complex cognition, includ-

ng decision-making ( Bellmund et al., 2018 ; Bongioanni et al., 2021 ).

any decisions require choosing between options that differ along (at

east) two dimensions – for example, gambles that differ in risk and pay-

ff, foods that differ in health and taste, or goods that differ in quality

nd price. A gridlike representation of such a two-dimensional space

ould allow, for example, inferences to be made about the qualities of

ovel attribute combinations based on their proximity in this concep-

ual space to attribute combinations that had previously been experi-

nced ( Bellmund et al., 2018 ). Recently, hexagonal gridlike modulation

as been observed in the vmPFC fMRI signal in macaques in response
021 
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Fig. 1. Intertemporal choice task design. Panel a shows an example trial in intertemporal choice task where the delayed larger option is shown on the screen 

(black square). The immediate smaller option, which is the same on every trial, is not shown on the screen (dotted square). Panel b shows all 120 choice trials in 

the task. Each choice is between an immediate $20 option (green dot) and a delayed larger monetary option (one of the blue circles). 
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o  
o cues signaling novel combinations of reward attributes (magnitudes

nd probabilities). Based on this observation, the authors argued that

ridlike representations in vmPFC could underlie a mechanism for mak-

ng choices between novel (rather than highly pretrained) options that is

hared across species, especially as most human fMRI studies implicating

he vmPFC in decision-making involve such choices ( Bongioanni et al.,

021 ). However, there has not yet been a direct test of whether there

s hexagonal grid-like modulation, in the vmPFC or elsewhere, during

ecision-making. 

Here we put this idea to the test: does the vmPFC exhibit hexagonal

ridlike modulation during decision making, thereby reflecting a con-

eptual map of attribute space? We first show that a hexagonal gridlike

odulation signal can in some cases be highly correlated with subjective

alue in the kinds of experimental designs widely used to identify value

ignals, suggesting that previously identified value correlates could have

een misconstrued gridlike modulation. Combined with recent empiri-

al results ( Bongioanni et al., 2021 ), this motivates returning to a large

xisting intertemporal choice dataset ( Kable et al., 2017 ), to empiri-

ally test if BOLD activity in vmPFC during this task is better explained

y subjective value or a hexagonal gridlike code. Across three different

nalyses, we show unambiguously that vmPFC activity in the intertem-

oral choice task is better described by a subjective value signal than

y a hexagonal gridlike modulation. This finding limits the generality

f hexagonal grid representations in vmPFC. Instead, vmPFC may flexi-

ly switch representational schemes so as to encode the most pertinent

nformation to the task at hand. 

ethods 

ataset 

All raw fMRI images and the behavioral responses are available on-

ine at openneuro.org (DOI: 10.18112/openneuro.ds002843.v1.0.0 ). All

MRI analyses were performed in FSL, which can be downloaded for

ree ( https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL ). All analysis codes and

nterim files are available online at OSF ( https://osf.io/78nym/ ). 

We used the fMRI dataset from Kable et al. (2017) , as its large num-

er of subjects permits a high-powered test between a subjective value

nd hexagonal grid code during decisions that involve a tradeoff be-

ween two choice attributes. All participants provided informed consent

nd all procedures were approved by the University of Pennsylvania In-

titutional Review Board. Participants completed two sessions in which
2 
hey performed an intertemporal choice task in the scanner 10 weeks

part. In each scan session, participants made 120 binary choices be-

ween a smaller immediate reward and a larger later reward, across 4

uns (30 choices per run). The smaller immediate reward was held con-

tant at $20 today while the larger later reward varied in amount ( A : $21

$85) and delay ( D : 20 days ~ 180 days) from trial to trial ( Fig. 1 ).

he specific combination of amount and delay of the larger later re-

ard were never repeated within the session and were sampled across

he entire range for each run so that there would be no difference in the

ange of options between runs. On average, participants saw most of the

mount and delay range in the task after the first run (96.5% of amount

ange, 97.2% of delay range). Session 2 had the same choice options as

ession 1, but in a different random order. On each trial, the amount

nd delay of the larger later option was displayed on the screen, while

he constant immediate option was not displayed. Participants used a

utton pad to indicate whether they would accept the larger delayed

ption shown on the screen or reject it in favor of the smaller immedi-

te option, which was not shown on the screen. This design simplifies

he identification of neural correlates of subjective value, as only the

ubjective value of the delayed option needs to be considered; since the

mmediate option is fixed, the sum, difference or ratio of the subjective

alues of the two options are all linearly related to the subjective value

f the delayed option. 

The two hypotheses provide different predictions of the expected sig-

al in this task ( Fig. 2 ). Subjective values depend on how individual sub-

ects weight the two attribute dimensions, but all subjects prefer larger

agnitudes and smaller delays, leading to the highest response in one

orner of the two-dimensional attribute space. For hexagonal grid mod-

lation, the relevant conceptual navigation in this task involves “travers-

ng ” between the two options being considered. A gridlike code would

ead to peaks in activity when navigating along hexagonally symmetric

irections spaced sixty degrees apart, with the angle of these peak di-

ections (the grid angle) being the one free parameter. For example, a

erson with a grid-angle at 0° would have activity peaks at 0° and 60° of

raversing angle and troughs at 30° and 90°, while another person with

 grid angle at 30° would have peaks at 30° and 90° and troughs at 0°

nd 60°. The distribution of potential trajectory angles in this task (be-

ween a delayed larger monetary option and immediate $20) are shown

n Fig. 3 a. To verify that our chosen task design does not unduly limit the

ossible trajectories, we also calculated the distribution of trajectory an-

les should one choose two random options in the task space (i.e., two

f the blue circles in Fig. 1 b). After excluding ‘no-brainer’ choices, in

https://doi.org/10.18112/openneuro.ds002843.v1.0.0
https://www.fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
https://www.osf.io/78nym/
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Fig. 2. Example SV signal and hexagonal gridlike signal in two attribute space. Panel a shows an example subjective value signal when comparing two options 

that vary in amount and delay. In the choice task used here, an SV signal will vary depending on the subjective value of the variable delayed option. Panel b shows 

an example hexagonal gridlike signal when mentally traversing between two points (shown in example is a grid angle of 0°, such that the peak activity occurs when 

traversing at 0° and 60°; this grid angle may vary from person to person). In the choice task used here, a hexagonal gridlike signal will vary depending on the 

trajectory angle between the two options. 
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hich one option is stronger than the other on both attributes, the re-

aining choices offer trajectory angles that are similar to what we have

n the current design ( Fig. 3 b). 

Of the 160 participants that completed session 1, we excluded par-

icipants with any missing runs ( n = 6), too much head movement (any

un out of 4 runs with > 5% of mean image displacements greater than

.5 mm; n = 3), more than 3 missing trials per run for two or more

uns ( n = 2), entirely one-sided choice such that the participant always

hose the immediate or the delayed option ( n = 3), and one partici-

ant who expressed knowledge of their experimental condition in the

riginal study. This resulted in the final sample size of 145 participants

or session 1. Of these participants, only 114 completed session 2, from

hich we also excluded those with missing runs ( n = 3), too much head

ovement ( n = 2), too many missing trials ( n = 2), or entirely one-sided

hoices ( n = 5). This gave us a total of 102 participants for session 2.
3 
n total, 145 participants’ data were used for session 1 and 102 partici-

ants’ data were used when analyzing both sessions. 

Participants were scanned with a Siemens 3T Trio scanner with

 32-channel head coil. T1-weighted anatomical images were ac-

uired using an MPRAGE sequence (T1 = 1100 ms; 160 axial slices,

.9375 × 0.9375 × 1.000 mm; 192 × 256 matrix). T2 ∗ -weighted func-

ional images were acquired using an EPI sequence with 3mm isotropic

oxels, (64 × 64 matrix, TR = 3,000ms, TE = 25 ms; tilt angle = 30°) in-

olving 53 axial slices with 104 volumes. B0 fieldmap images were also

ollected for distortion correction (TR = 1270 ms, TE = 5 and 7.46 ms).

he datasets were preprocessed via FSL FEAT (FMRIB fMRI Expert Anal-

sis Tool). Functional images were skull stripped with BET (FMRIB Brain

xtraction Tool), motion corrected and aligned with MCFLIRT (FM-

IB Linear Image Restoration Tool with Motion Correction), spatially

moothed with a FWHM 9 mm Gaussian Kernel, and high pass filtered
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Fig. 3. Distribution of trajectory angles. Panel a shows the distribution of trajectory angles in this task when traveling between the immediate option (green dot 

in Fig 1 b ) and the delayed options (blue circles in Fig 1 b ). Panel b shows the distribution of trajectory angles if two random options were to be chosen from the task 

space (i.e., two of the blue circles in Fig 1 b ). Trajectory angles between two options with a tradeoff are marked in blue while those between two options with no 

tradeoff (i.e., when one option dominates the other option) are marked in orange. 
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104 s cutoff). Registration was performed with FNIRT with warp res-

lution of 20 mm (FMRIB’s Non-linear Image Registration Tool) to a

 mm MNI standard brain template. 

ould a hexagonal grid signal be mistaken for a subjective value signal? 

Before any empirical analysis, we asked whether, in theory, hexag-

nal gridlike modulation could mimic or account for activity correlated

ith subjective value in this task. To do this, we simulated a subjective

alue signal at a given discount rate for a range of amounts and delays,

nd then estimated the best-fitting gridlike modulation for this signal.

or a given discount rate, the subjective values of delayed monetary

utcomes were calculated using the hyperbolic model: 

𝑉 𝑜𝑓 $ 𝐴 𝑖𝑛 𝐷 𝑑𝑎𝑦𝑠 = 

𝐴 

1 + 𝑘𝐷 

(1)

here k is the individual discount rate. The amount A varied from 20

o 80 in increments of 2 (31 levels) and the delay D varied from 20 to

80 in increments of 5 (33 levels) resulting in a total of 1023 subjective

alues for a given k . This 1023-element vector ( SV ) was then regressed

gainst two hexagonal grid modulation regressors: 

 𝑡 = 𝛽0 + 𝛽1 cos 
(
6 𝜃𝑡 

)
+ 𝛽2 sin 

(
6 𝜃𝑡 

)
+ 𝜖𝑡 , 𝜃𝑡 = atan 

( 

𝐴 𝑡 − 20 
𝐷 𝑡 

) 

(2)

The model contains a linear combination of the sine and cosine of the

rajectory angle 𝜃 with 60° periodicity. The trajectory angle 𝜃 is taken

s the angle between the abscissa and the traversing line between the

mmediate option ($20 now) and the delayed option ($ A in D days) in

he two-dimensional space defined by the amount and delay attributes

e.g., Fig. 1 b, 2 b). The linear sum of cosine and sine function acts as a

hase shift (i.e., generally: 𝑝 cosθ + 𝑞 sinθ = 𝑘 cos ( θ + 𝜙) ) such that we can

dentify the best phase (i.e., grid angle) of the cosine modulation without

sing a non-linear regression. After fitting the regression, we calculated

he Pearson correlation between SV and the fitted signal to assess the

imilarity between the two. This procedure was repeated for 51 levels

f k whose base-10 log ranged from -5 (i.e., k = 0.00001: very patient)

o 0 (i.e., k = 1: very impatient) in 0.1 increments. For comparison, we

lso calculated the Pearson correlation between SV and hexagonal grid

odulation signals for six grid angles uniformly sampled between 0 and

0 degrees and report these in the supplemental materials. 
4 
MRI analysis – voxelwise GLM 

In empirical fMRI data, we first performed two GLMs in session 1

ata to test for activity that was correlated with subjective value or

exagonal grid signals. For the subjective value GLM, we used two re-

ressors: an event regressor that modeled average activity of all trials,

nd second regressor that modeled activity modulated by subjective

alue. The subjective value of the delayed reward was estimated by fit-

ing a hyperbolic discounting function to choice data using a logit choice

odel ( A is the delayed amount, D is the delay, k is the discount rate,

nd 𝛽 is the scaling factor): 

𝑜𝑔𝑖𝑡 ( 𝑃 ( 𝑐 ℎ𝑜𝑖𝑐 𝑒 = 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 ) ) = 𝛽

(
𝐴 

1 + 𝑘𝐷 

− 20 
)

(3)

Regions correlated with subjective value were identified by perform-

ng a sign-flipping permutation test on individual beta images of the sub-

ective value regressor. For the gridlike modulation GLM, we used three

egressors: an event regressor and two hexagonal grid angle regressors

 𝑛 = 6 ): 

os 
(
𝑛 𝜃𝑡 

)
, sin 

(
𝑛 𝜃𝑡 

)
, 𝜃𝑡 = atan 

( 

𝐴 𝑡 − 20 
𝐷 𝑡 

) 

(4)

Regions correlated with hexagonal grid signal were identified by first

ransforming the F -statistic of the two hexagonal grid regressors to a z -

tatistic and then by performing a sign-flipping permutation test on the

 -transformed F -stat images ( Constantinescu et al., 2016 ). 

MRI analysis – model comparison 

We tested whether vmPFC activity is better described by a subjec-

ive value or hexagonal gridlike signal in three different ways. First,

nd most straightforward, we performed a model comparison between

he subjective value GLM and the hexagonal modulation GLM. We com-

ared the Akaike Information Criterion (AIC) scores of the two GLM

odels in each of four ROIs: vmPFC and ventral striatum ROIs from the

artra et al. (2013) meta-analysis of subjective value, and two spherical

OIs (radius = 2 voxels) from the peak activation coordinates reported

y Constantinescu et al. (2016) in vmPFC and ERC. 

Second, we assessed if 6-fold grid modulation was the best model

ut of all n-fold grid modulation GLMs. If there is indeed hexagonal grid

odulation, a 6-fold model should explain the most variance compared

o 4-fold, 5-fold, 7-fold, and 8-fold modulation models. We repeated the

rid-modulation GLM analysis in the four ROIs for 4~8fold regressors:
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r  
os ( 𝑛 𝜃𝑡 ) , sin ( 𝑛 𝜃𝑡 ) , 𝑛 = 4 ∼ 8 . Since all the models have the same number

f parameters, we compared the 4-fold, 5-fold, 6-fold, 7-fold, and 8-fold

odels using the z-converted F -statistics of the grid angle regressors to

ssess which set of n-fold regressors explain the most variance in each

OI. Furthermore, to set up clear expectations of the resulting pattern

nder different hypotheses, we simulated the analysis as closely as possi-

le by generating the BOLD signal for each subject and regressing these

imulated data with the 4–8fold regressors. To simulate the results of

he analysis when the signal is subjective value, we used the individual’s

tted hyperbolic subjective value as modulators of neural activity that

ere convolved with a double-gamma HRF with autocorrelated noise

dded (drawn from a multivariate Gaussian distribution with inter-TR

orrelation of 0.12). To simulate the results of the analysis when the sig-

al is a hexagonal gridlike modulation, we randomly chose one unique

rid angle for each subject (between 0° and 60°) and calculated each

rial’s neural activation according to the alignment between the grid

ngle and trial angle ( n = 6): 

os 
(
𝑛 
(
𝜃𝑡 − 𝜙

))
, 𝜃𝑡 = atan 

( 

𝐴 𝑡 − 20 
𝐷 𝑡 

) 

(5)

The resulting hexagonal modulation was also convolved with a

ouble-gamma HRF with autocorrelated noise added. The simulated

ubjective value BOLD signal and the hexagonal grid BOLD signal were

hen regressed against the same regressors used for the real data. 

To ensure the robustness of the results, we performed the model

omparison analyses above in alternatively defined ROIs and also in

lternatively scaled attribute spaces. For the former, we defined spher-

cal ROIs from peak GLM coordinates closest to the vmPFC and ERC

eaks in Constantinescu et al. (2016) and to the vmPFC and VS peaks

n Bartra et al. (2013) . For the latter, we calculated n-fold grid modula-

ion regressors in an attribute space where both amount and delay were

in-max normalized to have equal range. The model comparison results

n these alternative ROIs and alternative attribute spaces were the same

s in the original ROIs and original attribute spaces and are therefore

resented in the supplemental materials. 

MRI analysis – cross-session consistency analysis 

Third, following the methods of previous studies, we tested the con-

istency of grid angles across session 1 and session 2 data. Based on

he properties of grid cell representations in non-human animals, it is

ssumed that for a given brain region each person’s hexagonal grid is

riented at a unique angle that stays constant across time. For exam-

le, when people are navigating through a two-dimensional space, one

erson’s grid may have a 6-fold modulating activity that peaks when

he person traverses through space at 20 + 60 x ( x = 0 … 5) degree an-

les while another person’s activity may peak at 40 + 60 x ( x = 0 …

) degree angles. We test for such consistency by first calculating each

ndividual’s unique grid angle from the first session’s data using cos ( 𝑛𝜃)
nd sin ( 𝑛𝜃) as regressors. The average coefficients in each of the four

OIs ( ̄𝛽cos , 𝛽sin ) were used to calculate that individual’s n -fold grid angle

or that ROI ( 𝜙𝑛 = atan ( ̄𝛽sin ∕ ̄𝛽cos )∕ 𝑛 ). Then, we tested if neural activity

n the same ROI in session 2 was aligned with this grid angle by using

he consistency regressor shown in Eq. 5 . The average z -statistic of this

onsistency regressor within the pre-defined ROIs was used to measure

he consistency effect across sessions. The key test was whether the con-

istency effect was the highest at 6-fold, rather than 4-, 5-, 7-, or 8-fold

odulation. In addition to examining grid angle consistency, we also ex-

mined the distribution of estimated 6-fold grid angles and report this

n the supplementary materials. 

Again, to set up clear expectations of the grid angle consistency re-

ults under different hypotheses, we simulated the results of this grid

ngle consistency analysis under two conditions: when the underlying

ignal is subjective value, and when the underlying signal is hexagonal

odulation. For subjective value, we calculated the 102 participants’

ubjective values in both session 1 and session 2 separately via Eq. 3 and
5 
imulated the BOLD response by convolving the subjective value mod-

lation with a double gamma HRF. For 6-fold modulation, we picked

 random angle between 0° and 60° for each subject, which stayed the

ame across both sessions, and simulated a 6-fold modulation signal ac-

ording to Eq. 5 (with n = 6). The resulting simulated neural activity

ere then convolved with a double-gamma HRF. After adding autocor-

elated noise to both subjective value and grid signal, we performed the

rid-angle consistency analysis in the same manner as on the real data

s outlined above. 

The grid angle consistency analysis is the only test that uses data

rom session 2. As reported in Kable et al. (2017) , after session 1 par-

icipants were randomized to either a cognitive training intervention or

n active control condition. As there were no differences between the

wo groups in brain activity or decision-making in session 2, we com-

ine them in the analyses reported below. However, when we performed

he consistency analysis in the control group only, we found the same

esults. 

We performed the grid angle consistency analysis across sessions 1

nd 2 to maximize statistical power. However, since one concern might

e that the two sessions are too distant in time for any potential grid-

ike representations to be stable, we also performed the grid angle con-

istency analysis across runs within session 1 data. The within-session

ross-run results were similar and are provided in the supplemental ma-

erials. 

esults 

Here we compare two potential coding schemes for vmPFC during

ecision-making, subjective value and hexagonal grid modulation, both

f which are functions of the two attribute dimensions of the choice op-

ions. In intertemporal decision-making, the domain we study here, the

wo attribute dimensions are the amount of the money and the delay un-

il its receipt. A subjective value code predicts that the activity elicited

y an option increases as the amount of money increases and decreases

s the delay to receipt increases ( Fig. 2 a). The relative slopes of these

hanges will vary across people depending on the relative weight they

lace on monetary amounts and delays. On the other hand, a hexagonal

ridlike code predicts that activity will vary as a function of the angle in

wo-dimensional attribute space between the two options that are being

ompared, with highest activity when this angle matches the person’s

nique grid angle ( Fig. 2 b). This prediction assumes that comparing two

ptions in a choice task is akin to conceptually navigating between them

n two-dimensional attribute space. In contrast to other navigation tasks,

n the case of binary choice comparisons, it is unknown where concep-

ual navigation would start and where it would end; however, because

he hexagonal grid is symmetric, travel in both directions (that is, from

ption 1 to option 2 or vice versa) yields equivalent predictions (e.g.,

5° is the same as 225°). 

It is important to note that in decision-making tasks the trajectory

ngles are necessarily constrained to half of the entire possible space

ecause only comparisons between two options that involve a tradeoff

etween the two attributes are non-trivial. That is, most two-attribute

hoice problems involve a comparison between one option that is better

n one attribute and another option that is better on the other attribute;

n the intertemporal decision-making case, this translates to choices be-

ween greater amounts of money at longer delays versus lesser amounts

f money at shorter delays. For example, a choice between $20 today

nd $30 in 10 days involves a tradeoff between more money and a longer

elay, while a choice between $20 today and $10 in 10 days involves

o tradeoffs, the immediate option dominates as it is both more money

nd sooner. Both decision theory and neural evidence suggest that such

ominated or “no-brainer ” choices, in which one option is better than

he other on both attributes, can use different psychological and neural

echanisms than choices that involve tradeoffs between the attributes

 Hunt et al., 2012 ; Kahneman and Tversky, 1979 ). Because two quad-

ants within the two-dimensional attribute space correspond to domi-
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Fig. 4. Correlation between SV signal and its most similar hexagonal modulation signal. The top three panels show simulated subjective value signals for 

various delayed amounts at various discount rates and the next three panels below show their respective best fitting hexagonal grid modulations. The correlations 

between the two signals are provided below in dotted lines across various discount rates. 
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a  
ated choices (in the examples above, $20 today versus $30 in 10 days

orresponds to a trajectory angle of 45° while $20 today versus $10 in

0 days corresponds to a trajectory angle of 135°), most two-attribute

hoice tasks, including the choice task we use here, only sample the

ther two quadrants ( Fig. 2 a-b). 

In the intertemporal choice task we study, one of the two options is

xed, so that participants choose on every trial between an immediate

ption that is always $20 and a delayed option that varies from trial to

rial in monetary amount and length of delay. This feature of the design

implifies testing for correlates of subjective value, as we can now test

or signals modulated by the subjective value of the variable, delayed

arger reward, according to that individual’s intertemporal preferences

captured by their discount rate). However, this feature does not com-

licate our ability to test for a hexagonal gridlike code; though it is

quivalent to restricting the space of choices to one quadrant of Fig. 2 a,
6 
iven the symmetry of the hexagonal grid code, it does not further re-

trict the range of potential trajectory angles sampled in our design. As

hown in Fig. 3 , the distribution of trajectory angles in the current task

 Fig. 3 a) is similar to the distribution of trajectory angles one would get

f two options are chosen at random with the constraint that there is a

radeoff between the two options (i.e., that one option is not both bigger

n amount and proximal in delay; Fig. 3 b). 

We first show via simulation that a hexagonal grid modulation over

ecision attribute space could in theory account for previously observed

eural correlates of subjective value in this task ( Cox and Kable, 2014 ;

able et al., 2017 ; Kable and Glimcher, 2007 , 2010 ). We calculated the

est-fitting grid angle for different subjective value landscapes gener-

ted assuming different intertemporal preferences (i.e., different dis-

ount rates for delayed rewards). Fig. 4 shows subjective value signals

nd their best-fitting gridlike signals at various discount rates. The max-
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Fig. 5. Regions with significant subjective value correlation (top) and significant hexagonal gridlike modulation (bottom) in session 1. ( p < 0.05 with 

permutation testing with threshold free cluster enhancement). The rightmost brain shows overlays of the two ROIs from Bartra et al. (2013) on top and the two ROIs 

from Constantinescu et al. (2016) on bottom. 
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of 6-fold modulation GLM in the first session and tests for modulation at 
mum correlation between the two signals ranges between r = 0.5 and

 = 0.7 depending on the discount rate. Note that these high correla-

ions occur only at specific grid angles and not at others (specifically

rid angles around 30–40°, Supplementary Fig. 1 ). Nonetheless, these

imulations show that it is possible for hexagonal modulation and sub-

ective value to be confused with each other under some conditions and

elp to motivate testing and comparing these two accounts in neural

ata. 

We next test for neural activity correlated with subjective value or

ridlike modulation in real data. Subjects in our study participated in

wo imaging sessions separated by ten weeks, and we perform this test

n session 1 data. Fig. 5 shows significant effects across the whole brain

or both subjective value and gridlike modulation regressors. Perhaps

iven the statistical power in our dataset ( n = 145), we observed sig-

ificant effects in widespread brain regions for both analyses. The sub-

ective value effects, which we have reported previously for this dataset

 Kable et al., 2017 ), include peaks in the vmPFC and ventral striatum

hat overlap with previous meta-analyses of subjective value correlates

 Bartra et al., 2013 ). The gridlike modulation effects include peaks in

he vmPFC and entorhinal cortex (ERC) as observed previously during

onceptual navigation by Constantinescu et al. (2016) . 

The widespread effects observed for the gridlike modulation analy-

is, which encompass almost the entire brain, emphasize an important

oint: given that the angle of grid modulation is a free parameter, includ-

ng between runs, these regressors provides a good degree of flexibility

o fit a diversity of response patterns. Hence, definitive evidence for a

exagonal grid modulation signal requires showing that modulation is

tronger at 6-fold than at other folds and that the angle of grid modula-

ion is consistent across time. We turn to these stronger tests as we next

mployed three different ways to directly compare subjective value and

exagonal gridlike codes as accounts of neural activity in this task. 

First, we simply compare the AICs of the subjective value and hexag-

nal grid GLMs above. We found the subjective value GLM was a better
7 
escriptive model of fMRI activity in all four ROIs tested ( Fig. 6 ). Most

ubjects had smaller AICs for the subjective GLM than for the hexago-

al grid GLM in both the vmPFC and ventral striatum ROIs drawn from

artra et al. (2013) , as well as in both the vmPFC and ERC ROIs drawn

rom Constantinescu et al. (2016) . We also performed this comparison

cross all voxels in the brain, and we did not find any voxels where the

exagonal grid GLM has significantly lower AIC. 

Despite this significant result in all four ROIs, one may wonder if the

ubjective value GLM is favored simply because AIC favors models with

ewer parameters. Our next test avoids this issue, as we compare dif-

erent n-fold grid modulation GLMs in the same ROIs. If the true signal

s a hexagonal gridlike modulation, a 6-fold modulation model should

ccount for more variance in the data compared to 4, 5, 7, or 8-fold

odulation ( Fig. 7 ). In contrast, if the true signal is subjective value,

-fold modulation should account for the most variance, and variance

xplained should decline across 4–8 folds ( Fig. 7 ; in other words, 4-fold

odulation best mimics a subjective value signal, which in our task is

lways highest in one corner of the two-dimensional attribute space and

owest in the opposite corner). In none of the four ROIs did we find that

-fold modulation was the best descriptor of the BOLD signal. In fact,

n both the vmPFC and ventral striatum ROIs from Bartra et al. (2013) ,

nd in the vmPFC ROI from Constantinescu et al. (2016) , we found that

-fold modulation explains significantly more variance than the 6-fold

odulation ( Fig. 7 ). This difference was not significant in the ERC ROI

rom Constantinescu et al. (2016) . Again, we also performed this com-

arison across all voxels in the brain, and we did not find any voxels

here the 6-fold model explains significantly more variance than the

-fold model. 

As a third test, we take advantage of the fact that subjects partici-

ated in two sessions in our study and perform the exact grid angle con-

istency analysis proposed to be the critical test for gridlike responses in

onstantinescu et al. (2016) . This test fixes the grid angle based on the fit
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Fig. 6. Model comparison between subjective value GLM and hexagonal grid GLM. Each of the four panels show the histogram of individual AIC differences 

between the hexagonal grid GLM and the subjective value GLM such that a positive number indicates AIC difference favoring the SV model. The top two panels 

are from the ROIs from Bartra et al. (2013) ; the bottom two panels are from the hexagonal grid ROIs from Constantinescu et al. (2016) . All four ROIs’ mean AIC 

difference was significantly different from 0 at 𝑝 ≪ . 001 with a one-sample t-test. 
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hat grid angle for 4~8 fold-modulation in the second session. Similar to

he analysis above, if the true signal is hexagonal modulation, we should

ee the strongest grid-angle consistency effect with 6-fold modulation. In

ontrast, if the true signal is subjective value, we should see the strongest

rid-angle consistency effect with 4-fold modulation. This analysis of

rid angle consistency again unambiguously shows that vmPFC activ-

ty is consistent with subjective value and does not exhibit consistent

exagonal gridlike modulation ( Fig. 8 ). We found that the grid-angle

onsistency effect was significantly larger at 4-fold modulation than 6-

old modulation in both the vmPFC ROIs from Bartra et al. (2013) and

rom Constantinescu et al. (2016) . 

Some readers may wonder about the distribution of estimated 6-fold

rid angles. Because the correlation between a gridlike modulation sig-

al and a subjective value signal is maximized at certain grid angles

 Supplementary Fig. 1 ), if the true signal is subjective value, the distri-

ution of estimated 6-fold grid angles should be distinctly non-uniform,

ith more grid angles in the range that maximizes this correlation (de-

ending on the discount rate, the maximum occurs between 34° and

4°). In contrast, if the true signal is hexagonal modulation, there is no

eason to expect any non-uniformity. Observing a uniform distribution
8 
s less definitive, though, as grid angles would also be expected to be dis-

ributed randomly under the null hypothesis. Further, the lack of signifi-

ant 6-fold grid angle consistency suggests that the estimated 6-fold grid

ngles should be interpreted cautiously. Nonetheless, for completeness,

e also examine the distribution of estimated 6-fold grid angles, and

onsistent with an underlying signal of subjective value, find a distinctly

on-uniform distribution of 6-fold grid angles with a peak near 40° in

oth the vmPFC and ventral striatum ROIs from Bartra et al. (2013) and

n the vmPFC ROI from Constantinescu et al. (2016) ( Supplementary

ig. 2 ). 

Finally, we perform several additional analyses to demonstrate the

obustness of these results under different sets of assumptions. First, our

OIs, defined based on past studies, could have missed the exact location

f gridlike modulation in the current study. If we define subjective value

nd gridlike code ROIs based on the peaks of these analyses in the cur-

ent study, rather than on previous studies, we observe exactly the same

attern of results ( Supplementary Fig. 3 ). Second, our gridlike modu-

ation analyses assume that in the scaling of two attribute dimensions

ne dollar is equivalent to one day. If we alternatively assume that the

wo dimensions are such that the range of amounts and delays sampled
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Fig. 7. Comparison of n-fold grid modulation GLMs in session 1 data. The top two panels show simulated results of n-fold grid modulation GLMs when the true 

signal is SV (left) or a hexagonal gridlike code (right). When the true signal is subjective value, we expect a descending staircase pattern, and when the true signal 

is a hexagonal grid, we expect a pyramid pattern. The middle two panels show the GLM analysis in SV ROIs from Bartra et al. (2013) ; the bottom two panels show 

them for hexagonal grid ROIs from Constantinescu et al. (2016) . The error bars denote the standard errors of the mean. Paired t-test between 4-fold and 6-fold: ∗ p 

< .05, ∗ ∗ p < .01, ∗ ∗ ∗ p < .001. All 20 bars are significantly greater than zero (uncorrected p < .001 for all). 
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over an equivalent scale, we again observe exactly the same pattern

f results as above ( Supplementary Figs. 4-5 ). Third, we examine grid

ngle consistency across pairs of runs within session 1 data, in order

o address the concern that gridlike representations were present but

ot stable across the delay between our two sessions. We again observe

xactly the same pattern of results ( Supplementary Fig. 6 ). 

iscussion 

During decision-making, vmPFC activity has previously been shown

o correlate with subjective value; recently, it has been argued that
9 
mPFC represents a hexagonal gridlike code for the conceptual space

ormed by the attributes of the choice options, which enables choices

etween novel attribute combinations ( Bongioanni et al., 2021 ). Here

e directly compared these two accounts of vmPFC activity in a large

MRI dataset of a standard two-attribute intertemporal decision task

nvolving two sessions. We found, unambiguously across three differ-

nt tests, that the vmPFC signal during intertemporal decision mak-

ng is better explained by a subjective value than a hexagonal grid-

ike signal. First, a simple model comparison between a GLM that as-

umed activity was correlated with subjective value and one that as-

umed activity was modulated in a hexagonal gridlike manner favored
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Fig. 8. Grid-angle consistency analysis in session 2 data. The top two panels show simulated results of grid-angle consistency analysis when the true signal is 

subjective value (left) or a hexagonal gridlike code (right). When the true signal is subjective value, we expect a descending staircase pattern, and when the true signal 

is a hexagonal grid, we expect a pyramid pattern. The middle two panels show the grid-angle consistency analysis in subjective value ROIs from Bartra et al. (2013) ; 

the bottom two panels show them for hexagonal grid ROIs from Constantinescu et al. (2016) . Paired t-test between 4-fold and 6-fold: ∗ ∗ p < .01. Only 4-fold models 

are significantly different from zero (uncorrected p < .05) in vmPFC ROIs. 4-fold, 5-fold, and 6-fold models are all significantly different from zero (uncorrected p < 

.05) in the ventral striatum ROI. No models are significantly different from zero in entorhinal cortex. 
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he subjective model in vmPFC. Second, across various n-fold grid mod-

lation models, the 6-fold hexagonal modulation model was not the

est model of vmPFC activity. Rather, a 4-fold modulation that could

est mimic subjective value was the best fitting model. Thirdly, we

ound that the cross-session consistency of an individual’s grid angles

as not the highest when assuming 6-fold hexagonal modulation. In-

tead, we again found that the 4-fold modulation model resulted in

igher cross-session grid angle consistency, matching our simulation re-

ults for a subjective value signal. Thus, we found strong evidence that

OLD activity in vmPFC during intertemporal decision-making is cor-

elated with subjective value and does not reflect a hexagonal gridlike

ode. 

Though there are assumptions in any one of the analyses we per-

ormed, the strong convergence of results across analyses and robust-

ess checks lends strength to these conclusions. For example, the direct

odel comparison requires a choice about how to penalize the hexag-

nal grid model for its greater number of parameters, the grid model
10 
equires an assumption about the relative scaling of the two attribute di-

ensions, and the cross-session grid angle consistency analysis assumes

tability of this representation across ten weeks. However, across three

ifferent kinds of tests, for two different methods of defining ROIs and

or two different assumptions about the scaling of attribute dimensions,

nd examining grid angle consistency both within- and across-sessions,

e consistently find evidence for a subjective value signal and no sig-

ificant evidence at all for a hexagonal gridlike code in vmPFC. 

Our results constrain the implications of

onstantinescu et al. (2016) and Bongioanni et al. (2021) by lim-

ting the conditions under which a gridlike code is observed in

he vmPFC. Our intertemporal choice task is different from the

asks used in those studies. Both of those studies involved extensive

earning of a novel conceptual space by the participants; ours takes

dvantage of a spontaneous conceptual space created by the option

ttributes as they are presented in a choice task. Participants in

onstantinescu et al. (2016) imagined the visual transformation of a
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timulus along a certain trajectory in conceptual space; participants in

ongioanni et al. (2021) responded to novel cue combinations to obtain

utcomes with novel combinations of reward attributes (probabilities,

agnitudes); whereas we simply ask participants to make a choice.

evertheless, all three tasks similarly involve a two-dimensional space

here gridlike representations of the task structure might be expected

nd indeed have been proposed ( Bellmund et al., 2018 ). Our findings

uggest that the two-dimensional space defined by the option attributes

hat is available during decision-making does not necessarily provoke

ridlike representations. 

In humans, future studies of decision-making should examine a wider

ange of task designs to further test the generality of our conclusions.

he potential correlation between subjective value and gridlike modu-

ation is specific to the kind of experimental design used here, where

ne option is fixed and the other option is consistently better on one

ttribute and worse on the other attribute. This kind of design has been

idely used in decision-making studies, but in other designs it is possi-

le to completely orthogonalize value and gridlike modulations, which

ould allow for testing for distinct neural representations of each. For

xample, in intertemporal choice tasks, one could use a fixed reference

ption that is in the middle of the attribute space (e.g., $40 in 40 days),

o that there can be feasible tradeoff options in two quadrants (i.e.,

ore delay with more amount, or less delay with less amount). Alter-

atively, one could allow both options to vary in amount and delay,

hich might also lead the decision-maker to better represent the at-

ribute space (analogous to starting navigation tasks from many different

oints in space). Finally, it will also be important to investigate decision-

aking tasks involving different reward commodities and attribute

imensions. 

In such future studies, there are strong reasons to believe that our

esults here will generalize. Here it is important to consider the behav-

oral relevance of different representations. Behavior in many decision-

aking tasks, including the current intertemporal choice task, can be

ccounted for by assuming that decision-makers integrate the attributes

f each option (e.g., amount and delay) into a single dimension of sub-

ective value and choose the option that is highest in value. Subjective

alue is therefore directly linked to behavior, and this simpler repre-

entational scheme would nonetheless provide the most relevant infor-

ation for decision-making, the relative ordering of different options

n terms of a decision-maker’s preferences. In contrast, the metric rela-

ionships between different choice options in two-dimensional attribute

pace that gridlike representations would provide – distances between

ny two options, what options lie in between two others, and paths that

onnect the two options – are less clearly relevant for the kind of de-

ision tasks we studied here. On this point, notably even the study ar-

uing that gridlike representations underlie novel choice did not show

vidence of such representations in the paradigm where a choice was

ctually required ( Bongioanni et al., 2021 ). Our results suggest that dur-

ng preference-based choice, activity in vmPFC instead tracks the most

ehaviorally relevant representation of the option space – subjective

alue. 

More broadly, a strong possibility is that representations in vmPFC

re flexible, that vmPFC represents the relevant cognitive map for the

urrent task ( Bernardi et al., 2018 ; Schuck et al., 2016 ; Wilson et al.,

014 ), and therefore the nature of the coding scheme in vmPFC may

epend on the demands of the task at hand. Computational modeling

uggests similar flexibility in entorhinal cortex representations, that grid

ells arise because of the structure of navigational tasks, and that dif-

erent task environments lead to different kinds of entorhinal repre-

entations ( Whittington et al., 2020 ). A similar account could explain

ow the vmPFC, like the medial temporal lobe, plays an important

ole in such a wide variety of functions, from learning and decision-

aking to schematic memory and social cognition ( Behrens et al., 2018 ;

ehr and Camerer, 2007 ; Gilboa and Marlatte, 2017 ; Grabenhorst and

olls, 2011 ; Janowski et al., 2013 ; Lieberman et al., 2019 ; Powell and

edish, 2016 ; Roy et al., 2012 ). 
11 
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