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Abstract Effective learning requires using errors in a task-dependent manner, for example

adjusting to errors that result from unpredicted environmental changes but ignoring errors that

result from environmental stochasticity. Where and how the brain represents errors in a task-

dependent manner and uses them to guide behavior are not well understood. We imaged the

brains of human participants performing a predictive-inference task with two conditions that had

different sources of errors. Their performance was sensitive to this difference, including more

choice switches after fundamental changes versus stochastic fluctuations in reward contingencies.

Using multi-voxel pattern classification, we identified task-dependent representations of error

magnitude and past errors in posterior parietal cortex. These representations were distinct from

representations of the resulting behavioral adjustments in dorsomedial frontal, anterior cingulate,

and orbitofrontal cortex. The results provide new insights into how the human brain represents

errors in a task-dependent manner and guides subsequent adaptive behavior.

Introduction
Errors often drive adaptive adjustments in beliefs that inform behaviors that maximize positive out-

comes and minimize negative ones (Sutton and Barto, 1998). A major challenge to error-driven

learning in uncertain and dynamic environments is that errors can arise from different sources that

have different implications for learning. For example, a bad experience at a restaurant that recently

hired a new chef might lead you to update your belief about the quality of the restaurant, whereas a

similar experience at a well-known restaurant with a chef that has long been your favorite might be

written off as a one-time bad night. That is, the same errors should be interpreted differently in dif-

ferent contexts. In general, errors that represent fundamental changes in the environment or that

occur during periods of uncertainty should probably lead you to update your beliefs and change

your behavior, whereas those that result from environmental stochasticity are likely better ignored

(d’Acremont and Bossaerts, 2016; Li et al., 2019; Nassar et al., 2019a; O’Reilly et al., 2013).

Neural representations of key features of these kinds of dynamic, error-driven learning processes

have been identified in several brain regions. For example, several studies focused on variables

derived from normative models that describe the degree to which individuals should dynamically

adjust their beliefs in response to error feedback under different task conditions, including the prob-

ability that a fundamental change in the environment just occurred (change-point probability, or

CPP, which is a form of surprise) and the reducible uncertainty associated with estimates of environ-

mental features (relative uncertainty, or RU). Correlates of these variables have been identified in

dorsomedial frontal (DMFC) and dorsolateral prefrontal (DLPFC) cortex and medial and lateral pos-

terior parietal cortex (PPC) (Behrens et al., 2007; McGuire et al., 2014; Nassar et al., 2019a).

These and other studies also suggest specific roles for these different brain regions in error-driving

learning, including representations of surprise induced by either state changes or outliers (irrelevant

to state changes) in the PPC that suggest a role in error monitoring (Nassar et al., 2019a;
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O’Reilly et al., 2013), and representations of variables more closely related to belief and behavior

updating in the prefrontal cortex (PFC) (McGuire et al., 2014; O’Reilly et al., 2013). However, these

previous studies, which typically used continuous rather than discrete feedback, were not designed

to identify neural signals related to a key aspect of flexible learning in uncertain and dynamic envi-

ronments: responding to the same kinds of errors differently in different conditions.

To identify such task-dependent neural responses to errors, we adapted a paradigm from our

previous single-unit recording study (Li et al., 2019). In this paradigm, we generated two different

dynamic environments by varying the amount of noise and the frequency that change-points occur

(i.e. hazard rate; Behrens et al., 2007; Glaze et al., 2015; Nassar et al., 2012; Nassar et al., 2010).

In one environment, noise was absent and the hazard rate was high, and thus errors unambiguously

signaled a change in state. We refer to this high-hazard/low-noise condition as the unstable environ-

ment, because most errors can be attributed to volatility. In another environment, noise was high

and the hazard rate was low, and thus small errors were ambiguous and could indicate either a

change in state or noise. We refer to this low-hazard/high-noise condition as the noisy environment,

because most errors can be attributed to stochasticity. Thus, effective learning requires treating

errors in the two conditions differently, including adjusting immediately to errors in the unstable

environment but using the size of errors and recent error history as cues to aid interpretation of

ambiguous errors in the noisy environment.

In our previous study, we found many single neurons in the anterior cingulate cortex (ACC) or

posterior cingulate cortex (PCC) that responded to errors or the current condition, but we found lit-

tle evidence that single neurons in these regions combined this information in a task-dependent

manner to discriminate the source of errors or drive behavior. In the current study, we used whole-

brain fMRI and multi-voxel pattern classification to identify task-dependent neural responses to

errors and activity predictive of behavioral updating in the human brain. The results show task-

dependent encoding of error magnitude and past errors in PPC and encoding of behavioral shifts in

frontal regions including ACC, DMFC, DLPFC and orbitofrontal cortex (OFC), which provide new

insights into the distinct roles these brain regions play in representing errors in a task-dependent

manner and using errors to guide adaptive behavior.

Results
Sixteen human participants performed a predictive-inference task (Figure 1A) while fMRI was used

to measure their blood-oxygenation-level-dependent (BOLD) brain activity. The task required them

to predict the location of a single rewarded target from a circular array of ten targets. The location

of the rewarded target was sampled from a distribution based on the location of the current best

target and the noise level in the current condition. In addition, the location of the best target could

change according to a particular, fixed hazard rate (H). Two conditions with different noise levels

and hazard rates were conducted in separate runs. In the noisy condition (Figure 1B–C), the

rewarded target would appear in one of the five locations relative to the location of the current best

target, and the hazard rate was low (H = 0.02). In the unstable condition (Figure 1D–E), the

rewarded target always appeared at the location of the best target, and the hazard rate was high

(H = 0.35). On each trial, participants made a prediction by looking at a particular target, and then

were given explicit, visual feedback about their chosen target and the rewarded target. Effective

performance required them to use this feedback in a flexible and task-dependent manner, including

typically ignoring small errors in the noisy condition but responding to small errors in the unstable

condition by updating their beliefs about the best-target location.

Behavior
Nearly all of the participants’ choice patterns were consistent with a flexible, task-dependent learn-

ing process (closed symbols in Figure 2). On average, they learned the location of the best target

after a change in its location more quickly and reliably in the unstable than the noisy condition

(Figure 2A). This flexible learning process had two key signatures. First, target switches (i.e. predict-

ing a different target than on the previous trial) tended to follow errors of any magnitude in the

unstable condition but only errors of high magnitude (i.e. when the chosen target was 3, 4, or five

targets away from the rewarded target) in the noisy condition (sign test for H0: equal probability of

switching for the two conditions; error magnitude of 1: median = �0.35, interquartile range (IQR) =
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[�0.62,–0.25], p<0.001; error magnitude of 2: median = �0.30, IQR = [�0.70,–0.11], p<0.001;

Figure 2B–C). Second, target switches depended on error history only for low-magnitude errors (i.e.

when the chosen target was 1 or two targets away from the rewarded target) in the noisy condition

but not otherwise (sign test for H0: switching was unaffected when recent history contained fewer

errors; error magnitude of 1: median = �0.29, IQR = [�0.42,–0.10], p=0.004; error magnitude of 2:

median = �0.25, IQR = [�0.38,–0.14], p<0.001; Figure 2D–F).

We accounted for these behavioral patterns with a reduced Bayesian model that is similar to ones

we have used previously to model belief updating in a dynamic environment (open symbols in Fig-

ure 2; Tables 1 and 2). This model provides a framework to interpret and use errors differently

according to the current task conditions, as defined by hazard rate and noise level. The decision-

maker’s trial-by-trial updates are governed by ongoing estimates of the probability that the best tar-

get changed (change-point probability, or CPP) and reducible uncertainty about the best target’s

location (relative uncertainty, or RU). Both quantities are influenced by the two free parameters in

the model, subjective estimates of the task hazard rate and noise level, which were fitted separately

in each condition for each participant. As expected, the fitted hazard rates were higher in the unsta-

ble condition than in the noisy condition, although both tended to be higher than the objective val-

ues, as we have observed previously (Nassar et al., 2010). However, the fitted noise estimates were

not reliably different between the noisy and unstable conditions (Table 2). As we observed in our

previous study (Li et al., 2019), the subjective estimates of noise level were high in the unstable con-

dition despite the objective absence of noise.

We also tested several alternative models but they did not provide as parsimonious descriptions

of the data (Figure 2—figure supplement 2, and Tables 1 and 2). Notably, an alternative model

that assumed a condition-specific fixed learning rate also assumed errors were treated differently in

the two conditions but did not include trial-by-trial adjustments of learning rates used by the

reduced Bayesian model. Although this model performed better than the reduced Bayesian model

in the unstable condition, it cannot capture participants’ behaviors in the noisy condition, where

dynamically integrating both current and past errors is required for adapting trial-by-trial behavior.

Other hybrid models performed worse than the reduced Bayesian model in both conditions.
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Figure 1. Overview of task and experimental design. (A) Sequence of the task. At the start of the trial, participants look at a cross in the center of the

screen and maintain fixation for 0.5 s to initialize the trial. After the cross disappears, participants choose one of 10 targets (red) by looking at it within

1.5 s and then holding fixation on the chosen target for 0.3 s. During the outcome phase (1 s), a green dot inside the target indicates the participants’

choice. The rewarded target is shown in purple or cyan to indicate the number of earnable points as 10 or 20, respectively. (B) Probability distribution of

the rewarded target location in the noisy condition. Target location is relative to the location of the state (generative mean). The rewarded target

probabilities for the relative locations of [�2,–1, 0, 1, 2] are [0.05, 0.15, 0.6, 0.15, 0.05]. (C) Example of trials in the noisy condition. The states change

occasionally with a hazard rate of 0.02. (D) Probability distribution of the rewarded target location in the unstable condition. Because there is no noise

in this condition, the rewarded target is always at the location of the state. (E) Example of trials in the unstable condition. The states change frequently

with a hazard rate of 0.35.
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Neural representation of CPP and RU
The two key internal quantities in the reduced Bayesian model are CPP and RU, both of which con-

tribute to processing errors in a task-dependent manner (Figure 2—figure supplement 3). CPP

increases as the current error magnitude increases and achieves large values more quickly in the

unstable condition because of the higher hazard rate. These dynamics lead to a greater probability

of switching targets after smaller errors in the unstable condition. RU increases on the next trial after

the participant makes an error and does so more strongly in the noisy condition because of the

lower hazard rate. These dynamics lead to a greater probability of target switches when the last trial

was an error, which is most prominent for small errors in the noisy condition. Thus, CPP and RU each

account for one of the two key signatures of task-dependent learning that we identified in partici-

pants’ behavior, with CPP driving a task-dependent influence of error magnitude and RU driving a

task-dependent influence of error history on target switches.

Though not the main focus of this study, we were able to replicate our previous findings regard-

ing the neural representations of CPP and RU (McGuire et al., 2014). Similar to our previous study,
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Figure 2. Behavioral results. (A) Probability of choosing the best target after change-points. Symbols and error

bars are mean ± SEM across subjects (solid symbols) or simulations (open symbols). (B) Relationship between error

magnitude and switch probability. Symbols and error bars are as in A. (C) The distribution of switch probabilities

for small errors (magnitude of 1 or 2) in both conditions. Each data point represents one participant. Distributions

for all error magnitudes are shown in Figure 2—figure supplement 1. (D) Probability of switch as a function of

current error magnitude and error history in the unstable condition. Different colors represent different error

histories for the past three trials. A correct trial is marked as O, and an error trial is marked as X. For example,

XOO implies that trial t-1 was an error trial, and trial t-2 and trial t-3 were correct trials. Symbols and error bars are

mean ± SEM across subjects. (E) Probability of switch as a function of current error magnitude and error history in

the noisy condition. Symbols and error bars are as in D. (F) The distribution of the slopes of switch probability

against error history for small errors (magnitude of 1 or 2) in both conditions. Each data point represents one

participant. Distributions for all error magnitudes are shown in Figure 2—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Distributions of behavior as a function of error magnitude.

Figure supplement 2. Behavioral data and predictions from different models.

Figure supplement 3. Reduced Bayesian model applied to behavioral and imaging data.

Figure supplement 4. Neural representations of CPP and RU from the approximately ideal observer, which is the

reduced Bayesian model with true hazard rate and noise, for direct comparison to analyses in McGuire et al.,

2014, which used covariates constructed from the ideal rather than the fitted model.
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we found activity that was positively correlated with the levels of CPP and RU across DLPFC and

PPC (Figure 2—figure supplements 3 and 4). The regions of DLPFC and PPC that were responsive

to both CPP and RU were a subset of those identified as showing this conjunction in our previous

study. Because CPP and RU both contribute to responding to errors in a task-dependent manner,

the brain regions that responded to both variables are good candidates for encoding errors in a

task-dependent manner. In the following analyses, we aimed to directly identify task-dependent neu-

ral representations of error magnitude and error history, as well as activity that predicts subsequent

shifts in behavior.

Task-dependent neural representation of errors
We used multi-voxel pattern analysis (MVPA) to identify error-related neural signals that were similar

and different for the two task conditions. Given the two key signatures of flexible learning that we

identified in behavior, we were especially interested in identifying neural representations of error

magnitude and past errors that were stronger in the noisy than the unstable condition.

We found robust, task-dependent representations of the magnitude of the error on the current

trial in PPC. Consistent with the task-dependent behavioral effects, this representation of error mag-

nitude was stronger in the noisy than the unstable condition (Figure 3 and Table 3). Specifically, we

could classify correct versus error feedback on the current trial across almost the entire cortex, in

both the unstable and noisy conditions. However, for error trials, we could classify error magnitude

(in three bins: 1, 2, 3+ targets away from the rewarded target) only for the noisy condition and most

strongly in the lateral and medial parietal cortex and in the occipital pole. In a parallel set of

Table 1. BIC of behavior models.

Model Condition BIC improvement by RB model

Reduced Bayesian model (RB) Unstable

Noisy

Fixed learning rate model (fixedLR) Unstable 5.06 [3.63, 5.71]**

Noisy �21.05 [-76.63, 0.20]†

RB + fixedLR Unstable �9.83 [-11.20,–8.07]***

Noisy �4.64 [-10.51, 0.89]

RB + Pstay Unstable �5.20 [-5.65,–3.68]**

Noisy �5.55 [-5.65,–2.67]*

Values are shown as median [IQR]. A negative value means that the RB model performed better than the alternative

model. Significance was tested by a sign test. †p<0.08, **p<0.01, ***p<0.001.

Table 2. Parameters of behavior models.

Model Parameter Unstable Noisy Unstable > Noisy

RB H 0.82 [0.64, 0.90] 0.33 [0.11, 0.50] 0.37 [0.24, 0.62]***

K 0.59 [0.03, 2.22] 1.86 [1.22, 2.32] �0.23 [-1.97, 0.71]

fixedLR afixed 0.96 [0.86, 0.97] 0.63 [0.37, 0.73] 0.33 [0.19, 0.49]***

RB + fixedLR H 0.07 [0.00, 0.86] 0.03 [0.00, 0.19] 0.03 [-0.03, 0.77]

K 11.19 [2.78, 18.01] 3.22 [2.28, 9.90] 5.13 [-4.91, 16.10]

afixed 0.96 [0.75, 1.00] 0.88 [0.23, 1.00] 0.02 [-0.12, 0.52]

w 0.38 [0.16, 0.81] 0.71 [0.52, 0.87] �0.28 [-0.57, 0.22]

RB + Pstay H 0.73 [0.64, 0.88] 0.31 [0.06, 0.53] 0.27 [0.15, 0.66]**

K 8.42 [0.73, 30.42] 2.19 [1.62, 9.09] 2.71 [-2.60, 23.94]

Pstay 0.01 [0.00, 0.05] 0.01 [0.00, 0.13] 0.00 [-0.11, 0.03]

Parameter values are shown as median [IQR]. Difference of parameter values between the two conditions was tested

by a sign test. **p<0.01, ***p<0.001.
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analyses, we found that univariate activity in PPC also varied in a task-dependent way, responding

more strongly to error magnitude in the noisy than the unstable condition (Figure 3—figure supple-

ment 1).

We also found robust, task-dependent representations of past errors in PPC. These representa-

tions also were stronger in the noisy than the unstable condition, particularly on trials for which past

errors had the strongest influence on behavior. Specifically, we could classify correct versus error on

the previous trial in PPC for both task conditions (Figure 4). This classification of past errors

depended on the outcome of the current trial. We separated trials according to whether the current

feedback was correct or an error, or whether the error magnitude provided ambiguous (error magni-

tudes of 1 or 2) or unambiguous (error magnitudes of 0 or 3+) feedback in the noisy condition (Fig-

ure 4). We found reliable classifications of past errors in the lateral and medial parietal cortex in

both conditions for correct trials and trials with error magnitudes of 0 or 3+. Moreover, these repre-

sentations depended on the current condition, and, consistent with behavioral effects of error his-

tory, were stronger for error trials and trials with error magnitudes of 1 or two in the noisy than in

the unstable condition (Table 3). These task-dependent signals for past errors were not clearly pres-

ent in univariate activity (Figure 4—figure supplement 1). An additional conjunction analysis across

MVPA results showed that PPC uniquely encoded task-dependent error signals for both error magni-

tude of the current trials and past errors when the current trial’s error magnitude was 1 or 2

(Table 3).

Neural prediction of subsequent changes in behavior
Although PPC responds to errors in a task-dependent manner that could be used for determining

behavioral updates, we did not find that activity in this region was predictive of the participants’

Noisy

Unstable

Noisy

&

Unstable

Noisy

>

Unstable

Error vs Correct Error magnitude

Figure 3. Representations of error and error magnitude. For error versus correct analyses, multi-voxel neural

patterns were used to classify whether the response on the current trial was correct or an error. For error

magnitude analyses, multi-voxel neural patterns were used to classify different error magnitudes (1, 2, 3+)

conditional on the current trial being an error. Accuracies were calculated and compared with the baseline

accuracy within each subject and then tested at the group level. The representation of current error magnitude is

stronger in parietal cortex in the noisy condition than the unstable condition. The cluster-forming threshold was an

uncorrected voxel p<0.01 (t = 2.6), with cluster mass corrected for multiple comparisons using non-parametric

permutation tests.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Univariate representations of error and error magnitude.
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future behavior. Instead, we found such predictive activity more anteriorly in the frontal lobe. Specifi-

cally, we investigated whether multi-voxel neural patterns could predict participants’ target switches

on the subsequent trial. We focused on the trials with small error magnitudes (1 or 2) in the noisy

condition, because these were the only trial types that participants consistently exhibited an interme-

diate probability of switching (20–80%, Figure 2). We found that activity patterns in large cluster

encompassing motor cortex, OFC, ACC, DMFC, and DLPFC could predict subsequent stay/switch

decisions (Figure 5, Table 4). We also evaluated this result with different approaches to cluster for-

mation that were more or less spatially specific (Figure 5—figure supplement 1). We did not find

any regions where univariate activity reliably predicted participants’ subsequent behavior (Figure 5—

figure supplement 2).

Discussion
We identified task-dependent neural representations of errors in humans performing dynamic learn-

ing tasks. Participants were required to learn in two different dynamic environments. In the unstable

condition (high-hazard rate and low noise), errors unambiguously indicated a change in the state of

the environment, and participants reliably updated their behavior in response to errors. In contrast,

in the noisy condition (low-hazard rate and high noise), small errors were ambiguous, and partici-

pants used both the current error magnitude and recent error history to distinguish between those

errors that likely signal change-points and those likely arising from environmental noise. Using

MVPA, we showed complementary roles of PPC and prefrontal regions (including motor cortex,

OFC, ACC, DMFC and DLPFC) in the outcome-monitoring and action-selection processes underlying

these flexible, task-dependent behavioral responses to errors. Neural patterns in PPC encoded the

magnitude of errors and past errors, more strongly in the noisy than the unstable condition. These

task-dependent neural responses to errors in PPC were not reliably linked to subsequent changes in

behavior. In contrast, neural patterns in prefrontal regions could predict subsequent changes in

behavior (whether participants switch their choice on the next trial or not) in response to ambiguous

errors in the noisy condition.

Table 3. Summary of fMRI results: error magnitude and past error.

Cluster index #Voxels Region Peak t Peak x Peak y Peak z

Error magnitude: noisy versus unstable

1 21032 R precuneus 5.22 16 �56 12

R angular gyrus 5.17 44 �70 32

L precuneus 5.08 �18 �58 20

Occipital pole 5.07 2 �98 -2

L superior parietal lobule 4.91 �10 �66 48

R occipital cortex 4.69 26 �76 18

L occipital cortex 4.54 �38 �86 26

R superior parietal lobule 4.44 44 �44 54

Posterior cingulate cortex 4.43 2 �46 20

Past error on current error magnitude of 1 or 2: noisy versus unstable

1 1881 Posterior cingulate cortex 4.79 12 �24 52

R Superior parietal lobule 4.04 32 �38 54

R Precuneus 3.58 6 �54 70

L superior parietal lobule 3.54 �16 �54 62

Conjunction: Error magnitude and Past error on current error magnitude of 1 or 2

1 304 R superior parietal lobule 3.41 38 �40 52

2 103 R Precuneus 3.02 2 �58 70

3 81 L superior parietal lobule 3.23 �18 �56 72
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Task-dependent behavior adaptation
Consistent with previous studies of ours and others (d’Acremont and Bossaerts, 2016;

McGuire et al., 2014; Nassar et al., 2019a; Nassar et al., 2012; Nassar et al., 2010;

O’Reilly et al., 2013; Purcell and Kiani, 2016), human participants adapted their response to errors

differently in different environments. In the unstable condition, participants almost always switched

their choice after errors and quickly learned the new state after change-points. In contrast, in the

noisy condition, participants ignored many errors and only slowly learned the new state after

change-points. In this condition, participants had to distinguish true change-points from environmen-

tal noise, and they used error magnitude and recent error history as a cue for whether the state had

recently changed or not. These flexible and task-dependent responses to errors could be accounted

for by a reduced Bayesian model (McGuire et al., 2014; Nassar et al., 2012; Nassar et al., 2010).

This model assumes that participants use approximately optimal inference processes but can have

subjective estimates of environmental parameters (hazard rate, noise) that depart from their true

values.

Neural representation of change-point probability and relative
uncertainty
In the reduced Bayesian model, beliefs and behavior are updated dynamically according to two key

internal quantities, CPP and RU. Replicating our previous work (McGuire et al., 2014), we identified

neural activity correlated with both CPP and RU in PPC and DLPFC. This replication shows the

robustness of these neural representations of CPP and RU across experimental designs that differ

dramatically in their visual stimuli and motor demands, yet share the need to learn in dynamic envi-

ronments with similar statistics. We extended those findings to show that some brain regions that

encode both CPP, which in the model accounts for task-dependent behavioral responses to error

magnitude, and RU, which in the model accounts for task-dependent behavioral responses to recent

Noisy
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Noisy

&

Unstable

Noisy

>

Unstable

All

feedback

Correct

feedback

Error

feedback

Error magnitude

0 or 3+

Error magnitude

1 or 2

“Error vs Correct” on the previous trial 

Figure 4. Representations of errors on the previous trial conditional on different types of current trials (columns). Multi-voxel neural patterns were used

to classify correct responses versus errors on the previous trial. This analysis was repeated for different types of current trials: all feedback, correct

feedback, error feedback, error magnitude of 0 or 3+, and error magnitude of 1 or 2. The representation of past errors is stronger in parietal cortex in

the noisy condition than the unstable condition when the current trial is an error or the current error magnitude is 1 or 2. The cluster-forming threshold

was an uncorrected voxel p<0.01 (t = 2.6), with cluster mass corrected for multiple comparisons using non-parametric permutation tests.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Univariate representations of error on the previous trial conditional on different types of current trials (columns).
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error history, also encode errors in a task-dependent manner or predict subsequent behavioral

updates.

A B

Error magnitude on the current trial

Switch vs stay on the next trial

Past error conditional on error 

magnitude of 1 or 2 on the current trial

Switch vs stay on the next trial

Figure 5. Representations of subsequent behavioral choices (switch versus stay) after ambiguous small errors in the noisy condition. (A) Overlap of

results for switch versus stay on the next trial and error magnitude on the current trial. Multi-voxel neural patterns were used to classify whether

participants switch their choice to another target or stay on the same target on the next trial. We focused on the most ambiguous errors (error

magnitude of 1 or two in the noisy condition). Above-chance classification performance was found in a large cluster encompassing the frontal lobe. The

cluster-forming threshold was an uncorrected voxel p<0.01 (t = 2.6), with cluster mass corrected for multiple comparisons using non-parametric

permutation tests. (B) Overlap of results for switch versus stay on the next trial and past error conditional on error magnitude of 1 or two on the current

trial.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Representations of subsequent behavioral choices (switch versus stay) thresholded via threshold-free cluster enhancement

(TFCE) or with a cluster-forming threshold of p<0.001.

Figure supplement 2. Univariate GLM for switch versus stay on small error trials (magnitudes of 1 or 2) in the noisy condition.

Table 4. Summary of fMRI results: behavior change.

Cluster index #Voxels Region Peak t Peak x Peak y Peak z

Switch versus stay on error magnitude of 1 or two in the noisy condition

1 12042 Middle cingulate cortex 4.35 14 -8 30

R insula 4.33 38 4 2

Medial orbitofrontal cortex 4.24 -4 50 �10

R frontal pole 4.11 40 46 0

R inferior frontal gyrus 4.11 48 26 10

L frontal pole 4.01 �24 52 -2

Dorsomedial frontal cortex 3.96 0 26 34

Posterior cingulate cortex 3.93 2 �28 50

R primary motor cortex 3.91 48 -6 50

Anterior cingulate cortex 3.51 0 48 20

2 3134 L premotor cortex 4.43 �62 2 24

L superior temporal gyrus 4.28 �50 �32 12

L inferior frontal junction 3.72 �38 4 28

L postcentral gyrus 3.61 �50 �26 44
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Task-dependent neural representation of errors
Advancing beyond previous work, we identified task-dependent encoding of errors in neural activity

in the PPC. Mirroring the task dependence of behavior, the multivariate neural pattern in PPC

encoded current error magnitude more strongly in the noisy condition than in the unstable condition

and encoded past errors more strongly on trials that provided ambiguous feedback in the noisy con-

dition. These same regions of PPC have been shown previously to represent errors, error magni-

tudes, surprise and salience (Fischer and Ullsperger, 2013; Gläscher et al., 2010; McGuire et al.,

2014; Nassar et al., 2019a; Nassar et al., 2019b; O’Reilly et al., 2013; Payzan-LeNestour et al.,

2013). In addition, these regions have been shown to integrate recent outcome or stimulus history

in human fMRI studies (FitzGerald et al., 2015; Furl and Averbeck, 2011) and in animal single neu-

ron recording studies (Akrami et al., 2018; Brody and Hanks, 2016; Hanks et al., 2015;

Hayden et al., 2008; Hwang et al., 2017). Our results extend on these past findings by demonstrat-

ing that the neural encoding of error magnitude and error history in PPC is modulated across differ-

ent conditions in precisely the manner that could drive adaptive behavior.

These whole-brain fMRI results complement our previous results recording from single neurons in

ACC and PCC in the same task (Li et al., 2019). In that study, we identified single neurons in both

ACC and PCC that encoded information relevant to interpreting errors, such as the magnitude of

the error or the current condition. However, we did not find any neurons that combined this informa-

tion in a manner that could drive adaptive behavioral adjustments. Our whole-brain fMRI results sug-

gest that PPC would be a good place to look for task-dependent error representations in single

neurons, including a region of medial parietal cortex slightly dorsal to the PCC area we recorded

from previously.

Neural representations of behavioral updating
Also advancing beyond previous work, we identified neural activity predictive of behavioral updates

across the frontal cortex, including DLPFC. In the noisy condition, small errors provided ambiguous

feedback that could reflect either a change in state or environmental noise. Accordingly, after small

errors in the noisy condition, participants exhibited variability across trials in whether they switched

from their current choice on the subsequent trial or not. In these ambiguous situations, the multivari-

ate neural pattern in large cluster in frontal cortex, including motor cortex, OFC, ACC, DMFC and

DLPFC, predicted whether people switched or stayed on the subsequent trial. These results extend

previous findings that the multivariate pattern in frontal cortex, particularly ACC and medial PFC,

can decode subsequent switching versus staying in a reversal learning task (Hampton and O’doh-

erty, 2007). These results suggest a dissociation between PPC regions that monitor error informa-

tion in a task-dependent manner and frontal regions that may use this information to update beliefs

and select subsequent actions.

This ability to decode subsequent choices might arise from different kinds of representations in

different areas of frontal cortex. Whereas motor and premotor regions may reflect the change in

action plans, other frontal regions might reflect changes in abstract representations of belief states.

Medial PFC is involved in performance monitoring, distinguishing errors from different sources such

as actions and feedback (Ullsperger et al., 2014), registering a hierarchy of prediction errors from

those due to environmental noise to those due to a change in the environmental state

(Alexander and Brown, 2015), and interacting with lateral PFC to guide subsequent behavioral

adjustments in response to errors (Alexander and Brown, 2015). Consistent with this role, activity in

DMFC also reflects the extent of belief updating in dynamic environments (Behrens et al., 2007;

Hampton et al., 2006; McGuire et al., 2014; O’Reilly et al., 2013). OFC and DMFC encode the

identity of the current latent state in a mental model of the task environment and neural representa-

tions in these regions changes as the state changes (Chan et al., 2016; Hunt et al., 2018;

Karlsson et al., 2012; Nassar et al., 2019b; Schuck et al., 2016; Wilson et al., 2014). Activity in

inferior frontal junction reflects the updating of task representations (Brass and von Cramon, 2004;

Derrfuss et al., 2005). Neural activity in frontopolar cortex (Daw et al., 2006) and DMFC

(Blanchard and Gershman, 2018; Kolling et al., 2012; Kolling et al., 2016; Muller et al., 2019)

increases during exploratory choices, which occur more frequently during periods of uncertainty

about the most beneficial option. In a recent study, we identified distinct representations of latent

states, uncertainty, and behavioral policy in distinct areas of frontal cortex during learning in a
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dynamic environment (Nassar et al., 2019b). Our results extend these past findings and demon-

strate the role of these frontal regions in adjusting behavior in response to ambiguous errors.

Caveats
A few caveats should be considered when interpreting our results. First, we had relatively small num-

ber of participants in this study (n = 16). Although we control the false-positive rates through permu-

tation tests that have been validated empirically (Eklund et al., 2016), it is possible that we lacked

the statistical power to detect some effects, and so null results should be interpreted with caution.

Second, in this study, we created two qualitatively different task conditions by manipulating both

the noise levels and hazard rates. Thus, we cannot attribute any behavioral or neural differences

across conditions specifically to changes in either noise levels or hazard rates alone, but rather to

how the combinations of these two variables affect the interpretation and use of small errors. Future

studies can manipulate hazard rate and noise independently to examine their independent contribu-

tions to adaptive learning.

Conclusion
People adapt their behavior in response to errors in a task-dependent manner, distinguishing

between errors that indicate change-points in the environment versus noise. Here we used MVPA to

identify two distinct kinds of neural signals contributing to these adaptive behavioral adjustments. In

PPC, neural patterns encoded error information in a task-dependent manner, depending on error

magnitude and past errors only under conditions where these were informative of the source of

error. In contrast, activity in frontal cortex could predict subsequent choices that could be based on

this information. These findings suggest a broad distinction between outcome monitoring in parietal

regions and action selection in frontal regions when learning in dynamic and uncertain environments.

Materials and methods

Participants
All procedures were approved by University of Pennsylvania Internal Review Board. We analyzed

data from sixteen participants (nine females, seven males, mean age = 23.5, SD = 4.3, range = 18–

33 years) recruited for the current study. One additional participant was excluded from analyses

because of large head movements during MRI scanning (>10% of timepoint-to-timepoint displace-

ments were >0.5 mm). All participants provided informed consent before the experiment. Partici-

pants received a participation fee of $15, as well as extra incentives based on their performance

(mean = $15.09, SD = $2.26, range = $8.5–17.5).

Task
Participants performed a predictive-inference task during MRI scanning. On each trial, participants

saw a noisy observation sampled from an unobserved state. The participants’ goal was to predict

the location of the noisy observation. To perform this task well, however, they should infer the loca-

tion of the current state.

In this task (Li et al., 2019), there were 10 targets aligned in a circle on the screen (Figure 1A).

At the start of each trial, participants had to fixate a central cross for 0.5 s to initialize the trial. After

the cross disappeared, participants could choose one of 10 targets (red) by looking at it within 1.5 s

and keeping fixation on the chosen target for 0.3 s. Then, an outcome would be shown for 1 s. Dur-

ing the outcome phase, a green dot indicated the chosen target. A purple or cyan target indicated

the rewarded target, with color denoting 10 or 20 points of reward value, respectively. At the end of

experiment, every 75 points were converted to $0.25 as participants’ extra incentives.

Participants performed this task in two dynamic conditions separated into two different runs: a

high-noise/low-hazard (‘noisy’) condition and an low-noise/high-hazard (‘unstable’) condition. In the

noisy condition, the rewarded target could be one of five targets, given the underlying state

(Figure 1B). The rewarded target probabilities for the relative locations ([�2,–1, 0, 1, 2]) of the cur-

rent state were [0.05, 0.15, 0.6, 0.15, 0.05]. Thus, the location of the current state was most likely

rewarded, but nearby targets could also be rewarded. Occasionally, the state would change its loca-

tion with a hazard rate of 0.02 (Figure 1C). When a change-point happens, the new state would be
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selected among the ten targets based on a uniform distribution. In the unstable condition, there was

no noise (Figure 1D). That is, the location of the state would be always rewarded. However, the

state was unstable, as the hazard rate in this condition was 0.35 (Figure 1E). There were 300 trials in

each run.

Behavior analysis
We investigated how participants used error feedback flexibly across different conditions. Before

the behavioral analysis, we removed two different kinds of trials. First, we removed trials in which

participants did not make a choice within the time limit (Unstable: median number of trials = 10.5,

range = 1–83; Noisy: median = 10, range = 2–88). Second, we also removed trials in which the loca-

tion of the chosen target was not on the shortest distance between the previously chosen and previ-

ously rewarded targets (Unstable: median = 3, range = 0–24; Noisy: median = 17, range = 5–37). All

of the belief-updating models we tested predict that participants’ choice should be along the short-

est distance between the previously chosen target and the previously rewarded target. That is, par-

ticipants should update in a clockwise direction, if the shortest distance to rewarded target was

clockwise of the chosen target. Otherwise, they should update in a counterclockwise direction. We

removed trials where participants’ update was in the opposite direction of the rewarded target

(which would correspond to a learning rate <0) and trials where participants’ update was beyond the

location of the rewarded target (which would correspond to a learning rate >1), as this behavior can-

not be captured by any of the belief-updating models we tested. Further, this behavior might sug-

gest that participants had lost track of the most recently chosen or rewarded targets. The analysis

codes were written in MATLAB and are available at Github (Kao, 2020; https://github.com/chan-

ghaokao/mvpa_changepoint_fmri).

First, we investigated how fast participants learned the location of the current state. For each con-

dition and participant, we binned trials from trial 0 to trial 20 after change-points. Then, we calcu-

lated the probability of choosing the location of the current state for each bin.

Second, we examined how different magnitudes of errors lead to shifts in behavior. For each con-

dition and participant, we binned trials based on the current error magnitude (from 0 to 5). Then, for

each bin, we calculated the probability that participants switch their choice to another target on the

subsequent trial. We hypothesized participants would have a lower probability of switching after

small error magnitudes (1 or 2) in the noisy condition than in the unstable condition since such errors

could be due to environment noise in the noisy condition but would signal a state change in the

unstable condition.

Third, we further investigated how error history influenced participants’ behavioral shifts. Simi-

larly, we binned trials based on the current error magnitude and the error history of the last three tri-

als. Here, we used four bins of error magnitudes (0, 1, 2, 3+). Based on the outcome of correct or

error on the last three trials, there were 8 types of error history. For each error magnitude, we calcu-

lated the probability of switching for each type of error history. We hypothesized that participants in

the noisy condition would tend to switch their choice after small errors more if they had made more

errors recently. To test this hypothesis, we ordered the 8 types of error history based on the number

of recent errors and calculated the slope of probability of switching against the order of error his-

tory. A negative slope means that participants tend to switch as they receive more recent errors.

Behavior modeling
We fit several different computational models to participants’ choices to evaluate which ones could

best account for their behavior in the task.

Reduced Bayesian (RB) model
Previous studies have shown that a reduced Bayesian model, which approximates the full Bayesian

ideal observer, could account well for participants’ behavior in dynamic environments similar to the

current task (McGuire et al., 2014; Nassar et al., 2012; Nassar et al., 2010). In this model, belief is

updated by a delta rule:

dt ¼ xt �Bt (1)
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Btþ1 ¼ Bt þatdt (2)

where Bt is the current belief and xt is the current observation. The new belief (Btþ1) is formed by

updating the old belief according to the prediction error (xt �Bt) and a learning rate (at). The learn-

ing rate controls how much a participant revises their belief based on the prediction error. In this

model, the learning rate is adjusted on a trial-by-trial basis according to:

at ¼Wt þ 1�Wtð Þt t (3)

where Wt is the change-point probability and t t is the relative uncertainty. That is, at is high as either

Wt or t t is high. The change-point probability is the relative likelihood that the new observation rep-

resents a change-point as opposed to a sample from the currently inferred state (Nassar et al.,

2010):

Wt ¼
U xtj1; 10ð ÞH

U xtj1; 10ð ÞHþ fp xtjgt ;Btð Þ 1�Hð Þ
(4)

where H is the hazard rate, U xtj1; 10ð Þ is the probability of outcome derived from a uniform distribu-

tion, and fp xtjgt;Btð Þ is the probability of outcome derived from the current predictive distribution.

That is, U xtj1; 10ð Þ reflects the probability of outcome when a change-point has occurred while

fp xtjgt;Btð Þ reflects the probability of outcome when the state has not changed.

The predictive distribution is an integration of the state distribution and the noise distribution:

fp Xjgt;Btð Þ ¼C�P XjBtð Þgt� P XjBtð Þ (5)

where X is a random variable determining the locations of target, P XjBtð Þ is the noise distribution in

the current condition, P XjBtð Þgt is the state distribution, gt is the expected run length after the

change-point, and C is a normalizing constant to make the sum of probabilities in the predictive dis-

tribution equal one. Thus, the uncertainty of this predictive distribution comes from two sources: the

uncertainty of the state distribution (s2

s ) and the uncertainty of the noise distribution (s2

N ). The uncer-

tainty of the state distribution would decrease as the expected run length increases.

The expected run length reflects the expected number of trials that a state remains stable, and

thus is updated on each trial based on the change-point probability (Nassar et al., 2010):

gtþ1 ¼ gt þ 1ð Þ 1�Wtð ÞþWt (6)

where the expected run length is a weighted average conditional on the change-point probability. If

no change-point occurs (i.e. change-point probability is low), the expected run length would

increase, leading the uncertainty of the state distribution to decrease. That is, as more observations

from the current state are received, participants are more certain about the location of the current

state. However, if the change-point probability is high, which signals a likely change in the state, the

expected run length would be reset to 1. Thus, the uncertainty of the state distribution becomes

large. Participants are more uncertain about the current state after a change-point.

The other factor influencing the learning rate is the relative uncertainty, which is the uncertainty

regarding the current state relative to the irreducible uncertainty or noise (McGuire et al., 2014;

Nassar et al., 2012):

t tþ1 ¼
Wts

2

N þ 1�Wtð Þs2

s þWt 1�Wtð Þ dt 1� t tð Þ½ �2

Wts
2
N þ 1�Wtð Þs2

s þWt 1�Wtð Þ dt 1� t tð Þ½ �2þs2
N

(7)

The three terms in the numerator contribute to the uncertainty about the current state. The first

term reflects the uncertainty conditional on the change-point distribution; the second term reflects

the uncertainty conditional on the non-change-point distribution; and the third term reflects the

uncertainty due to the difference between the two distributions. The denominator shows the total

variance which is the summation of the uncertainty about the current state and the noise. As more

precise observations are received in a given state, this relative uncertainty would decrease.

To fit the reduced Bayesian model to behavior, we assumed that participants can depart from the

ideal observer by having subjective estimates of the key environmental variables, hazard rate and
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noise, that may differ from the true value of these variables. During model fitting, the subjective

noise distribution was estimated with the von Mises distribution, which is a circular Gaussian

distribution:

P xtjBt;Kð Þ ¼
eK cos xt�Btð Þ

P

10

i¼1

eK cos xi�Btð Þ

(8)

where Bt is the location of the current belief, xi is the location of target, and K controls the uncer-

tainty of this distribution. When K is 0, this is a uniform distribution. As K increases, the uncertainty

decreases. The denominator is used as a normalization term to make sure the sum of all the proba-

bilities equals one. Thus, there are two free parameters in this model: hazard rate (H, in Equation 4)

and noise level (K, in Equation 8). The range of hazard rate is between 0 and 1 and the noise level is

greater than or equal to zero.

Fixed learning rate (fixedLR) model
We also consider an alternative model in which participants used a fixed learning rate in each of the

two dynamic conditions. That is, the learning rate is the same over all trials in a condition. This model

has one free parameter, the fixed learning rate (afixed), for each condition (Equation 2). The fixed

learning rate is between 0 and 1.

Hybrid of RB model and fixedLR model
Furthermore, we consider a hybrid model, in which the learning rate on each trial is a mixture of the

learning rates from the RB model and the fixedLR model:

at ¼waRBþ 1�wð Þafixed (9)

where aRB is the learning rate from the RB model and is varied trial-by-trial according to Wt and t t,

afixed is the learning rate from the fixedLR model and w reflects the weight to integrate these two

learning rates. In this model, there are four free parameters: hazard rate, noise level, fixed learning

rate and weight. The weight is between 0 and 1.

Hybrid of RB model and Pstay

Finally, we consider a hybrid model, which combines the RB model with a fixed tendency to stay on

the current target regardless of the current observation. Such a fixed tendency to stay was observed

in monkeys in our previous study (Li et al., 2019). Here the belief is updated by:

Btþ1 ¼ Bt þ 1�Pstay

� �

�at Xt �Btð Þ þPstay� 0
� �

(10)

where Pstay is the probability that participants stay on the current target. This model has three free

parameters: hazard rate, noise level and the probability of stay. The probability of stay is between 0

and 1.

Model fitting and comparison
Each model was fitted to data from each participant and within each condition separately. Optimal

parameters were estimated by minimizing the mean of the squared error (MSE) between a partici-

pant’s prediction and the model prediction.

MSE¼

P

n

t¼1

Bt �Bt

� �2

n
(11)

where t is the trial, n is the total number of included trials, Bt is a participant’s prediction on trial t,

and Bt is the model prediction on trial t.

Because each model used a different number of parameters and each participant had a different

number of included trials, we used Bayesian Information Criterion (BIC) to compare the performance

of different models:
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BIC¼ n ln MSEð Þþ k ln nð Þ (12)

where n is the number of included trials and k is the number of free parameters in a model. A model

with lower BIC performs better.

MRI data acquisition and preprocessing
We acquired MRI data on a 3T Siemens Prisma with a 64-channel head coil. Before the task, we

acquired a T1-weighted MPRAGE structural image (0.9375 � 0.9375 � 1 mm voxels, 192 � 256

matrix, 160 axial slices, TI = 1,100 ms, TR = 1,810 ms, TE = 3.45 ms, flip angle = 9˚). During each run

of the task, we acquired functional data using a multiband gradient echo-planar imaging (EPI)

sequence (1.9592 � 1.9592 � 2 mm voxels, 98 � 98 matrix, 72 axial slices tilted 30˚ from the AC-PC

plane, TR = 1,500 ms, TE = 30 ms, flip angle = 45˚, multiband factor = 4). The scanning time

(mean = 24.14 min, SD = 1.47, range = 21.85–30.00) for each run was dependent on the partici-

pants’ pace. After the task, fieldmap images (TR = 1,270 ms, TE = 5 ms and 7.46 ms, flip angle = 60˚)

were acquired.

Data were preprocessed using FMRIB’s Software Library (FSL) (Jenkinson et al., 2012;

Smith et al., 2004). Functional data were motion corrected using MCFLIRT (Jenkinson et al., 2002),

high-pass filtered with a Gaussian-weighted least square straight line fitting of s ¼ 50 s, undistorted

and warped to MNI space. To map the data to MNI space, boundary-based registration was applied

to align the functional data to the structural image (Greve and Fischl, 2009) and fieldmap-based

geometric undistortion was also applied. In addition, the structural image was normalized to the

MNI space (FLIRT). Then, these two transformations were applied to the functional data.

fMRI analysis: univariate activity correlated with CPP and RU
Using similar procedures to our previous study (McGuire et al., 2014), we examined the effects of

CPP and RU on univariate activity. Both the current study and the previous study investigate the

computational process and neural mechanisms during learning in dynamic environments. The under-

lying task structures (which involved noisy observations and sudden change-points) are similar

between the two studies, but the two studies used very different visual stimuli and motor demands.

We specifically focused on the noisy condition in the current study because it was more similar to

the underlying structure, in terms of noisy observations and hazard rate of change-points, to our pre-

vious study.

We investigated the factors of CPP, RU, reward values and residual updates. The trial-by-trial

CPP and RU were either estimated from the RB model with subjective estimates of hazard rate and

noise (as this was the best-fitting model in the current study, analyses presented in Figure 2—figure

supplement 3) or from the RB model with true estimates of hazard rate and noise (as this corre-

sponds to how correlates of CPP and RU were identified in our previous study, analyses presented in

Figure 2—figure supplement 4). The residual update reflects the difference between the partici-

pants’ update and the predicted update, and is estimated from a behavioral regression model in a

similar manner as our previous study:

Updatet ¼ b0 þb1dt þb2dtWt þb3dt 1�Wtð Þt t þb4dtRewardþ " (13)

where Updatet is the difference between Btþ1 and Bt, dt is the error magnitude, both Wt and t t were

derived from the RB model, and the reward value indicated whether a correct response earned a

large or a small value on that trial.

Then, a general linear model using these four factors was implemented on the neural data. Here

we further smoothed the preprocessed fMRI data with a 6 mm FWHM Gaussian kernel. We included

several trial-by-trial regressors of interest in the GLM: onsets of outcome, CPP, RU, reward value,

and residual update. Six motion parameters were also included as confounds. To control false-posi-

tive rates (Eklund et al., 2016), statistical testing was implemented through one-sample cluster-

mass permutation tests with 5000 iterations. The cluster-forming threshold was uncorrected voxel

p<0.01. Statistical testing was then based on the corrected cluster p value. For the conjunction anal-

yses, we used the same procedure as the previous study (McGuire et al., 2014). We kept regions

that passed the corrected threshold and showed the same sign of effects. For these conjunction

tests, we only kept regions that have at least 10 contiguous voxels.
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Because the number of participants was fewer in this study (n = 16) than in the previous study

(n = 32), we might have lower power to detect effects in the whole-brain analyses. Thus, we also

implemented ROI analyses. We selected seven ROIs that showed the conjunction effects of CPP, RU

and reward value in the previous study (McGuire et al., 2014) and tested the effects of CPP and RU

in these ROIs.

We found previously that for a similar task, the presence or absence of reward on a given trial

influenced both belief-updating behavior and some aspects of its neural representation

(McGuire et al., 2014). To further examine those effects, here we included two different earnable

values (10 versus 20 points). However, we did not find any significant effects of earnable values on

either belief updating (b4 in Equation 13 was not significantly different than zero) or neural activity

(for the contrast of high versus low earnable value). We therefore do not further consider the effects

of this manipulation in the current report. We speculate that this lack of an effect contrasts from our

earlier finding because here we used high versus low earnable values, whereas in that study we used

the presence versus absence of earnable value.

fMRI analysis: multi-voxel pattern analysis (MVPA)
We implemented MVPA to understand the neural representation of error signals and subsequent

choices. Our analyses focus on the multi-voxel pattern when participants received an outcome.

Before implementing MVPA, we estimated trial-by-trial beta values using the unsmoothed prepro-

cessed fMRI data. We used the general linear model (GLM) to estimate the beta weights for each

trial (Mumford et al., 2012). In each GLM, the first regressor is the trial of interest and the second

combines the rest of trials in the same condition. These two regressors were then convolved with a

gamma hemodynamic response function. In addition, six motion parameters were included as con-

trol regressors. We repeated this process (one GLM per trial) to estimate trial-by-trial beta values for

all the trials in the two conditions. We then used these beta values as observations for MVPA. A

whole-brain searchlight was implemented (Kriegeskorte et al., 2006). In each searchlight, a sphere

with the diameter of 5 voxels (10 mm) was formed, and the pattern of activity across the voxels

within the sphere were used to run MVPA.

A support vector machine (SVM) with a linear kernel was used to decode different error signals

and choices in our whole-brain searchlight analysis. We implemented SVM through the LIBSVM tool-

box (Chang and Lin, 2011). To avoid overfitting, we used 3-fold cross-validation, with one fold used

as testing data and the other two as training data. Training data were used to train the classifier and

then this classifier was used on testing data to examine the classification accuracy. In linear SVM, a

free parameter c regularizes the trade-off between decreasing training error and increasing generali-

zation. Thus, during the training of classifier, the training data were further split into 3-folds to select

the optimal value of the parameter c through cross-validation. We pick the optimal value for c from

[0.001, 0.01, 0.1, 1, 10, 100, 1000] and this optimal parameter should maximize the cross-validation

accuracy. Then, we used the optimal parameter c to train the model again based on the entire train-

ing data and calculated the classification accuracy on the testing data. We repeated this procedure

with each of the three folds held out as testing data and calculated the average of the classification

accuracy. To minimize the influence of different number of trials for each category on the classifica-

tion accuracy, we used balanced accuracy. For balanced accuracy, we first calculated the classifica-

tion accuracy within each category, and then averaged the accuracies across all categories. The

baseline balanced accuracy was also validated via permutations with 5000 iterations. For each per-

mutation, each trial was randomly assigned one category with a probability proportional to the num-

ber of trials in that category among all the trials. We then used the average of balanced accuracy

across these iterations as the baseline accuracy. The baseline accuracy for two categories was 50%

and for three categories was 33%.

We first examined how the multi-voxel neural pattern on the current trial could discriminate cor-

rect versus error on the current trial or error magnitudes on error trials. For the analysis of error mag-

nitudes, we split trials into three bins of error magnitude: 1, 2, and 3+.

We next examined how the multi-voxel neural pattern on the current trial could discriminate

whether the previous trial was an error or not. We also investigated how the classification of past

errors differs conditional on the type of the current trial. We classified trial t-1 as correct or error sep-

arately for four different types of current trials: correct trials, error trials, trials with error magnitudes

of 0 or 3+ and trials with error magnitudes of 1 or 2. We differentiated between trials with error
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magnitudes of 0 or 3+ and trials with error magnitudes of 1 or two because error magnitudes of 0 or

3+ provide unambiguous evidence regarding a change of state in the noisy condition while error

magnitudes of 1 or two provide ambiguous evidence about a change of the state in the noisy

condition.

Lastly, we examined how the multi-voxel neural pattern on the current trial could classify the

choice on the next trial. In this analysis, we focused only on the trials with error magnitudes of 1 or

two in the noisy condition, because only under these conditions were participants similarly likely to

switch versus stay. For these trials, we examined whether the multi-voxel pattern on the current trial

predicted whether the participant stayed or switched on the next trial.

After obtaining the classification accuracy for each participant, we subtracted the baseline accu-

racy from the classification accuracy. Before conducting a group-level test, we smoothed these indi-

vidual accuracy maps with a 6 mm FWHM Gaussian kernel. To control false-positive rates

(Eklund et al., 2016), statistical testing was implemented through one-sample cluster-mass permuta-

tion tests with 5000 iterations. We used uncorrected voxel p<0.01 to form a cluster and estimated

the corrected cluster p value for each cluster. For comparison, we report our results using other clus-

ter-forming procedures in supplemental analyses. For the conjunction analyses, we used the same

procedure described above.
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O’Reilly JX, Schüffelgen U, Cuell SF, Behrens TE, Mars RB, Rushworth MF. 2013. Dissociable effects of surprise
and model update in parietal and anterior cingulate cortex. PNAS 110:E3660–E3669. DOI: https://doi.org/10.
1073/pnas.1305373110, PMID: 23986499

Kao et al. eLife 2020;9:e58809. DOI: https://doi.org/10.7554/eLife.58809 19 of 20

Research article Neuroscience

https://doi.org/10.1523/JNEUROSCI.4236-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22131418
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
http://www.ncbi.nlm.nih.gov/pubmed/20510862
https://doi.org/10.7554/eLife.08825
https://doi.org/10.1016/j.neuroimage.2009.06.060
http://www.ncbi.nlm.nih.gov/pubmed/19573611
https://doi.org/10.1523/JNEUROSCI.1010-06.2006
https://doi.org/10.1523/JNEUROSCI.1010-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16899731
https://doi.org/10.1073/pnas.0606297104
http://www.ncbi.nlm.nih.gov/pubmed/17227855
https://doi.org/10.1038/nature14066
http://www.ncbi.nlm.nih.gov/pubmed/25600270
https://doi.org/10.1016/j.neuron.2008.09.012
http://www.ncbi.nlm.nih.gov/pubmed/18940585
https://doi.org/10.1038/s41593-018-0239-5
http://www.ncbi.nlm.nih.gov/pubmed/30258238
https://doi.org/10.1038/s41467-017-01356-z
http://www.ncbi.nlm.nih.gov/pubmed/29089500
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
http://www.ncbi.nlm.nih.gov/pubmed/12377157
https://doi.org/10.1016/j.neuroimage.2011.09.015
http://www.ncbi.nlm.nih.gov/pubmed/21979382
https://github.com/changhaokao/mvpa_changepoint_fmri
https://doi.org/10.1126/science.1226518
http://www.ncbi.nlm.nih.gov/pubmed/23042898
https://doi.org/10.1126/science.1216930
http://www.ncbi.nlm.nih.gov/pubmed/22491854
https://doi.org/10.1038/nn.4382
https://doi.org/10.1038/nn.4382
http://www.ncbi.nlm.nih.gov/pubmed/27669988
https://doi.org/10.1073/pnas.0600244103
http://www.ncbi.nlm.nih.gov/pubmed/16537458
https://doi.org/10.1523/JNEUROSCI.0159-19.2019
https://doi.org/10.1523/JNEUROSCI.0159-19.2019
https://doi.org/10.1016/j.neuron.2014.10.013
http://www.ncbi.nlm.nih.gov/pubmed/25459409
http://www.ncbi.nlm.nih.gov/pubmed/25459409
https://doi.org/10.7554/eLife.39404
http://www.ncbi.nlm.nih.gov/pubmed/30816090
https://doi.org/10.1016/j.neuroimage.2011.08.076
https://doi.org/10.1016/j.neuroimage.2011.08.076
http://www.ncbi.nlm.nih.gov/pubmed/21924359
https://doi.org/10.1523/JNEUROSCI.0822-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20844132
https://doi.org/10.1038/nn.3130
http://www.ncbi.nlm.nih.gov/pubmed/22660479
https://doi.org/10.7554/eLife.46975
https://doi.org/10.1523/JNEUROSCI.1713-18.2018
https://doi.org/10.1523/JNEUROSCI.1713-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/30523066
https://doi.org/10.1073/pnas.1305373110
https://doi.org/10.1073/pnas.1305373110
http://www.ncbi.nlm.nih.gov/pubmed/23986499
https://doi.org/10.7554/eLife.58809


Payzan-LeNestour E, Dunne S, Bossaerts P, O’Doherty JP. 2013. The neural representation of unexpected
uncertainty during value-based decision making. Neuron 79:191–201. DOI: https://doi.org/10.1016/j.neuron.
2013.04.037, PMID: 23849203

Purcell BA, Kiani R. 2016. Hierarchical decision processes that operate over distinct timescales underlie choice
and changes in strategy. PNAS 113:E4531–E4540. DOI: https://doi.org/10.1073/pnas.1524685113,
PMID: 27432960

Schuck NW, Cai MB, Wilson RC, Niv Y. 2016. Human orbitofrontal cortex represents a cognitive map of state
space. Neuron 91:1402–1412. DOI: https://doi.org/10.1016/j.neuron.2016.08.019, PMID: 27657452

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M,
Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM. 2004.
Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23:S208–
S219. DOI: https://doi.org/10.1016/j.neuroimage.2004.07.051, PMID: 15501092

Sutton RS, Barto AG. 1998. Reinforcement Learning. MIT Press.
Ullsperger M, Danielmeier C, Jocham G. 2014. Neurophysiology of performance monitoring and adaptive
behavior. Physiological Reviews 94:35–79. DOI: https://doi.org/10.1152/physrev.00041.2012, PMID: 24382883

Wilson RC, Takahashi YK, Schoenbaum G, Niv Y. 2014. Orbitofrontal cortex as a cognitive map of task space.
Neuron 81:267–279. DOI: https://doi.org/10.1016/j.neuron.2013.11.005, PMID: 24462094

Kao et al. eLife 2020;9:e58809. DOI: https://doi.org/10.7554/eLife.58809 20 of 20

Research article Neuroscience

https://doi.org/10.1016/j.neuron.2013.04.037
https://doi.org/10.1016/j.neuron.2013.04.037
http://www.ncbi.nlm.nih.gov/pubmed/23849203
https://doi.org/10.1073/pnas.1524685113
http://www.ncbi.nlm.nih.gov/pubmed/27432960
https://doi.org/10.1016/j.neuron.2016.08.019
http://www.ncbi.nlm.nih.gov/pubmed/27657452
https://doi.org/10.1016/j.neuroimage.2004.07.051
http://www.ncbi.nlm.nih.gov/pubmed/15501092
https://doi.org/10.1152/physrev.00041.2012
http://www.ncbi.nlm.nih.gov/pubmed/24382883
https://doi.org/10.1016/j.neuron.2013.11.005
http://www.ncbi.nlm.nih.gov/pubmed/24462094
https://doi.org/10.7554/eLife.58809

